精英家教网 > 初中数学 > 题目详情
17.在平行四边形ABCD中,连接AC,按以下步骤作图,分别以A、C为圆心,以大于$\frac{1}{2}$AC的长为半径画弧,两弧分别相交于点M、N,作直线MN交CD于点E,交AB于点F.若AB=6,BC=4,则△ADE的周长为10.

分析 先根据平行四边形的性质得出AB=CD,AD=BC,再由作法可知直线MN是线段AC的垂直平分线,故可得出AE=CE,即AE+DE=CD,据此可得出结论.

解答 解:∵四边形ABCD是平行四边形,
∴AD=BC=4,CD=AB=6,
∵由作法可知,直线MN是线段AC的垂直平分线,
∴AE=CE,
∴AE+DE=CD=6,
∴△ADE的周长=AD+(DE+AE)=4+6=10.
故答案为:10.

点评 本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.已知一次函数y=kx+b过(-2,4),且与坐标轴围成的三角形面积为16,求一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2
(1)求实数k的取值范围.
(2)是否存在实数k使得x1x2-x12-x22=-7成立?若存在,请求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知:?ABCD的对角线交于点O,点E,F,P分别是OB,OC,AD的中点,若AC=2AB,求证:EP=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,E是?ABCD中AB延长线上一点,ED交BC于点F,求证:S△ABF=S△CEF

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.
已知:线段a.求作:等腰△ABC,使AB=AC,BC=a,BC边上的高为2a.作法:如图,(1)作线段BC=a;(2)作线段BC的垂直平分线DE交BC于点F;(3)在射线FD上顺次截取线段FG=GA=a,连接AB,AC.所以△ABC即为所求作的等腰三角形.
请回答:得到△ABC是等腰三角形的依据是:
①线段垂直平分线上的点到线段两个端点的距离相等:
②有两条边相等的三角形是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.根据下列要求,解答相关问题:
(1)请补全以下求不等式-2x2-4x≥0的解集的过程
①构造函数,画出图象:
根据不等式特征构造二次函数y=-2x2-4x;抛物线的对称轴x=-1,开口向下,顶点(-1,2)与x轴的交点是(0,0),(-2,0),用三点法画出二次函数y=-2x2-4x的图象如图1所示;
②数形结合,求得界点:
当y=0时,求得方程-2x2-4x=0的解为x1=0,x2=-2;
③借助图象,写出解集:
由图象可得不等式-2x2-4x≥0的解集为-2≤x≤0.
(2)利用(1)中求不等式解集的方法步骤,求不等式x2-2x+1<4的解集.
①构造函数,画出图象;
②数形结合,求得界点;
③借助图象,写出解集.
(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x的不等式ax2+bx+c>0(a>0)的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在△ABC中,AD=BF,点D,E,F分别是AC,BC,BA延长线上的点,四边形ADEF为平行四边形.
求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在菱形ABCD中,∠ABC=40°,BC的垂直平分线EF交对角线BD于点F.连接AF,则∠DAF的度数为120°.

查看答案和解析>>

同步练习册答案