精英家教网 > 初中数学 > 题目详情
已知Rt△ABC中,∠ACB=90°,CA=CB,有一个圆心角为45°,半径长等于CA的扇形CEF绕点C旋转,直线CE、CF分别与直线AB交于点M、N.
(1)如图①,当AM=BN时,将△ACM沿CM折叠,点A落在弧EF的中点P处,再将△BCN沿CN折叠,点B也恰好落在点P处,此时,PM=AM,PN=BN,△PMN的形状是______.线段AM、BN、MN之间的数量关系是______
【答案】分析:(1)根据折叠的性质知:△CAM≌△CMP、△CNB≌△CNP,所以∠A+∠B=∠FPC+∠EPC=90°,首先可得到△PMN是直角三角形,故PM、AM、BN的数量关系符合勾股定理,即AM2+BN2=MN2;而AM=BN,所以可得到PM=PN,即△PMN是等腰直角三角形,因此PM=PN=MN.
(2)参照(1)的思路,可将△ACM沿CM折叠,得△DCM,然后连接DN,证△DCN≌△BCN,后面的解法同(1).
(3)解法同(2).
解答:解:(1)根据折叠的性质知:
△CAM≌△CPM,△CNB≌△CNP;
∴AM=PM,∠A=∠CPM,PN=NB,∠B=∠CPN;
∴∠MPN=∠A+∠B=90°,PM=PN=AM=BN,
故△PMN是等腰直角三角形,AM2+BN2=MN2(或AM=BN=MN).

(2)AM2+BN2=MN2
将△ACM沿CM折叠,得△DCM,连DN,则△ACM≌△DCM,
∴CD=CA,DM=AM,∠DCM=∠ACM,同理可知∠DCN=∠BCN,
△DCN≌△BCN,DN=BN,而∠MDC=∠A=45°,∠CDN=∠B=45°
∴∠MDN=90°,
∴DM2+DN2=MN2
故AM2+BN2=MN2

(3)AM2+BN2=MN2;解法同(2).
点评:此题主要考查了图形的翻折变换以及勾股定理的应用,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是(  )
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延长线于E,BA、CE延长线相交于F点.
求证:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,两直角边AC、BC的长是关于x的方程x2-(m+5)x+6m=0的两个实数根.求m的值及AC、BC的长(BC>AC).

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,已知Rt△ABC中,∠C=90°∠A=36°,以C为圆心,CB为半径的圆交AB于P,则弧BP的度数是
72
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F,求证:BF⊥AD.

查看答案和解析>>

同步练习册答案