精英家教网 > 初中数学 > 题目详情

【题目】如图,直线AB,CD相交于点O,OA平分∠EOC.

(1)若∠EOC=80°,求∠BOD的度数;

(2)若∠EOC=EOD,求∠BOD的度数.

【答案】(1)40°;(2)45°.

【解析】

1)根据角平分线定义和对顶角相等即可得到结论;

2)先设∠EOC=x,则∠EOD=x,根据平角的定义得x+x=180°,解得x=90°,则∠EOC=x=90°,然后与(1)的计算方法一样.

1)∵OA平分∠EOC,∴∠AOC=EOC=×80°=40°,∴∠BOD=AOC=40°

2)设∠EOC=x则∠EOD=x根据题意得x+x=180°,解得x=90°,∴∠EOC=x=90°,∴∠AOC=EOC=×90°=45°,∴∠BOD=AOC=45°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,C为⊙O上一点,点D在CO的延长线上,连接BD,已知BC=BD,AB=4,BC=2
(1)求证:BD是⊙O的切线;
(2)求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在线段AB上,点MN分别是ACBC的中点.

1)若AC 9cmCB 6 cm,求线段MN的长;

2)若C为线段AB上任一点,满足ACCB cm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?

3)若C在线段AB的延长线上,且满足ACBC b cmMN分别为ACBC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点按这样的运动规律,经过第2017次运动后,动点P的坐标是______,经过第2018次运动后,动点P的坐标是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在图1至图3中,点B是线段AC的中点,点D是线段CE的中点。四边形BCGFCDHN都是正方形。AE的中点是MFH的中点是P

1如图1,点ACE在同一条直线上,根据图形填空:

①△BMF__________三角形;

MPFH的位置关系是___________MPFH的数量关系是____________

2将图1中的CE绕点C顺时针旋转一个锐角,得到图2,解答下列问题:

证明:BMF是等腰三角形;

1)中得到的MPFH的位置关系和数量关系是否仍然成立?证明你的结论;

3将图2中的CE缩短到图3的情况,(2)中的三个结论还成立吗?(成立的不需要说明理由,不成立的需要说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读以下材料: 2017年1月28日至2月1日农历正月初一至初五,平谷区政府在占地面积6万平方米的琴湖公园举办主题为“逛平谷庙会乐百姓生活”的平谷区首届春节庙会.
本次庙会共设置了文艺展演区、非遗展示互动区、特色商品区、儿童娱乐游艺区、特色美食区等五个不同主题的展区.展区总面积1720平方米.文艺展演区占地面积600平方米,占展区总面积的34.9%;非遗展示区占地190平方米,占展区总面积的11.0%;特色商品区占地面积是文艺展演区的一半,占展区总面积的17.4%;特色美食区占地200平方米,占展区总面积的11.6%;还有孩子们喜爱的儿童娱乐游艺区.
此次庙会本着弘扬、挖掘、展示平谷春节及民俗文化,以京津冀不同地域的特色文化为出发点,全面展示平谷风土人情及津冀人文特色.大年初一,来自全国各地的约3.2万人踏着新春的脚步,揭开了首届平谷庙会的帷幕.大年初二尽管天气寒冷,市民逛庙会热情不减,又约有4.3万人次参观了庙会,品尝特色美食,观看绿都古韵、秧歌表演、天桥绝活,一路猜灯谜、赏图片展,场面火爆.琳琅满目的泥塑、木版画、剪纸、年画等民俗作品也让游客爱不释手,纷纷购买.大年初三,单日接待游客约4万人次,大年初四风和日丽的天气让庙会进入游园高峰,单日接待量较前日增长了约50%.大年初五,活动进入尾声,但庙会现场仍然人头攒动,仍约有5.5万人次来园参观.

(1)直接写出扇形统计图中m的值;
(2)初四这天,庙会接待游客量约万人次;
(3)请用统计图或统计表,将庙会期间每日接待游客的人数表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O为等腰三角形ABC的外接圆,AB=AC.AD是⊙O的直径,切线DE与AC的延长线相交于点E.
(1)求证:DE∥BC;
(2)若DF=n,∠BAC=2a,写出求CE长的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,对角线ACBD相交于点OECD中点,连结OE.过点CCFBD交线段OE的延长线于点F,连结DF.求证:

(1)ODE≌△FCE

(2)四边形ODFC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=x+n与x轴交于点A,与y轴交于点B(点A与点B不重合),抛物线y=﹣ x2﹣2x+c经过点A、B,抛物线的顶点为C.

(1)∠BAO=°;
(2)求tan∠CAB的值;
(3)在抛物线上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案