精英家教网 > 初中数学 > 题目详情

解方程+=7时,利用换元法将原方程化为6y2—7y+2=0,则应设y=_____。

 

【答案】

【解析】

试题分析:只有分式方程两边都乘y才能化为整式方程.反过来,把整式方程两边都除以y就能得到分式方程6y-7+=0,这个分式方程最高次项的系数为6,原分式方程第二项的分子中有6,它们是相对应的关系.

6y2-7y+2=0两边同除以y得,

得6y-7+=0,

+6y-7=0,

∴y=

考点:本题考查的是换元法解分式方程

点评:在做此类问题的时候,可先把整式方程再还原为分式方程,找相对应的数进而求解.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.
天津市奥林匹克中心体育场--“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.
(Ⅰ)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)
(Ⅱ)列出方程(组),并求出问题的解.
  速度(千米/时) 所用时间(时) 所走的路程(千米)
骑自行车 X   10
乘汽车     10

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
为解方程(x-1)2-5(x-1)+4=0时,我们可以将x-1看作一个整体,然后设x-1=y….①,那么原方程可化为y2-5y+4=0,解得y1=1,y2=4.当y=1时,x-1=1,∴x=2;当y=4时,x-1=4,∴x=5;故原方程的解为x1=2,x2=5.
解答问题:
(1)上述解题过程,在由原方程得到方程①的过程中,运用了
换元
换元
法达到了解方程的目的,体现了转化的数学思想;
(2)请利用以上知识解方程:(3x+5)2-4(3x+5)+3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程时,把某个式子看成整体,用新的未知数去代替它,使方程得到简化,这叫换元法.先阅读下面的解题过程,再解出右面的方程:
例:解方程:2
x
-3=0

解:设
x
=t
(t≥0)
∴原方程化为2t-3=0
t=
3
2
t=
3
2
>0

x
=
3
2

x=
9
4

请利用上面的方法,解方程 x+2
x
-8=0

查看答案和解析>>

科目:初中数学 来源: 题型:

为解方程(x2-1)2-5(x2-1)+4=0,我们可将x2-1看作一个整体,然后设x2-1=y;那么原方程可化为y2-5y+4=0①,解这个方程,得y1=1,y2=4.当y1=1时,x2-1=1,所以x=±
2
;当y2=4时,x2-1=4,所以x=±
5
则原方程的解为x1=
2
x2=-
2
x3=
5
x4=-
5

解答下列问题:
(1)填空:在由原方程得到方程①的过程中,利用
换元
换元
法达到降次的目的,体现了
转化
转化
的数学思想;
(2)请利用上述方法解方程:(x2-2)2-5(x2-2)+6=0.

查看答案和解析>>

同步练习册答案