精英家教网 > 初中数学 > 题目详情
如图,Rt△OAB的斜边OA在x轴的正半轴上,直角的顶点B在第一象限内,已知点A(10,0),△OAB的面积为20.
(1)求B点的坐标;
(2)求过O、B、A三点抛物线的解析式;
(3)判断该抛物线的顶点P与△OAB的外接圆的位置关系,并说明理由.
(1)过B作BC⊥OA于C,
∵S△OAB=
1
2
OA•BC=20,OA=10,
∴BC=4
在直角三角形ABO中,BC⊥OA,
设OC=x,根据射影定理有:
BC2=OC•AC,即16=x(10-x),解得x=2,x=8
因此B(2,4);

(2)设抛物线的解析式为y=ax(x-10),
已知抛物线过B(2,4),有:
a×2×(2-10)=4,a=-
1
4

∴所求的抛物线解析式为:y=-
1
4
x2+
5
2
x;

(3)由(2)可知:y=-
1
4
(x-5)2+
25
4

因此P(5,
25
4

25
4
>5
∴顶点P在外接圆外.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于C点.
(1)直接写出抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小.请在图中画出点P的位置,并求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系中,抛物线y=-
1
2
x2+mx-n与x轴交于A、B两点.与y轴交于C点.已知A、B两点都在x轴负半轴上(A左B右),△AOC与△COB相似,且tan∠CBO=4tan∠BCO.
(1)求抛物线的解析式;
(2)若此抛物线的对称轴与直线y=nx交于D.以D为圆心,作与x轴相切的圆,交y轴于M、N两点.求劣弧MN所对的弓形面积;
(3)在y轴上是否存在一点F,使得FD+FA的值最小,若存在,求出△ABF的面积,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=-x2+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=-
1
2
时,y取最大值
25
4

(1)求抛物线和直线的解析式;
(2)设点P是直线AC上一点,且S△ABP:S△BPC=1:3,求点P的坐标;
(3)直线y=
1
2
x+a与(1)中所求的抛物线交于点M、N,两点,问:
①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.
②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)
(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=
(x2-x1)2+(y2-y1)2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,点A为抛物线C1:y=
1
2
x2-2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;
(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

下表给出了代数式x2+bx+c与x的一些对应值:
x-101234
X2+bx+c3-13
(1)根据表格中的数据,确定b、c的值,并填齐表格中空白处的对应值;
(2)代数式x2+bx+c是否有最小值?如果有,求出最小值;如果没有,请说明理由;
(3)设y=x2+bx+c的图象与x轴的交点为A、B两点(A点在B点左侧),与y轴交于点C,P点为线段AB上一动点,过P点作PEAC交BC于E,连接PC,当△PEC的面积最大时,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,抛物线y=-x2+2x+3与x轴交于A、B两点,直线BD的函数表达式为y=-
3
x+3
3
,抛物线的对称轴l与直线BD交于点C、与x轴交于点E.
(1)求A、B、C三个点的坐标;
(2)点P为线段AB上的一个动点(与点A、点B不重合),以点A为圆心、以AP为半径的圆弧与线段AC交于点M,以点B为圆心、以BP为半径的圆弧与线段BC交于点N,分别连接AN、BM、MN.
①求证:AN=BM;
②在点P运动的过程中,四边形AMNB的面积有最大值还是有最小值?并求出该最大值或最小值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

有一个抛物线形的拱形隧道,隧道的最大高度为6m,跨度为8m,把它放在如图所示的平面直角坐标系中.
(1)求这条抛物线所对应的函数关系式;
(2)若要在隧道壁上点P(如图)安装一盏照明灯,灯离地面高4.5m.求灯与点B的距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

物业管理部门为了美化环境,在小区靠墙1五侧设计了五处长方形花圃(墙长25n),三边外围用篱笆围起,栽上蝴蝶花,共用篱笆x0n,
(1)设花圃1宽为x米,请你用含x1代数式表示花圃1长;
(2)花圃1面积能达到200n2吗?
(b)花圃1面积能达到250n2吗?如果能,请你给出设计方案;如果不能,请说明理由.
(x)你能根据所学过1知识求出花圃1最大面积吗?此时,篱笆该怎样围?

查看答案和解析>>

同步练习册答案