精英家教网 > 初中数学 > 题目详情
13.函数y1=x与y2=$\frac{4}{x}$的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是①③.

分析 结合图形判断各个选项是否正确即可.

解答 解:①由图象可以看出函数图象上的每一个点都可以找到关于原点对称的点,故正确;
②在每个象限内,不同自变量的取值,函数值的变化是不同的,故错误;
③结合图象的2个分支可以看出,当x=2时,y=2+$\frac{4}{2}$=4,即在第一象限内,最低点的坐标为(2,4),故正确;
∴正确的有①③.
故答案为:①③.

点评 考查根据函数图象判断相应取值;理解图意是解决本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是$\frac{5}{6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.2016年,我国又有1240万人告别贫困,为世界脱贫工作作出了卓越贡献.将1240万用科学记数法表示为a×10n的形式,则a的值为1.24.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知一次函数y=k1x+b与反比例函数y=$\frac{k_2}{x}$的图象交于第一象限内的P($\frac{1}{2}$,8),Q(4,m)两点,与x轴交于A点.
(1)分别求出这两个函数的表达式;
(2)写出点P关于原点的对称点P'的坐标;
(3)求∠P'AO的正弦值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是(  )
A.三棱柱B.四棱柱C.三棱锥D.四棱锥

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处.一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为(  )
A.)$\frac{1}{9}$B.)$\frac{1}{6}$C.)$\frac{1}{4}$D.)$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,EF过?ABCD对角线的交点O,交AD于E,交BC于F,若?ABCD的周长为18,OE=1.5,则四边形EFCD的周长为(  )
A.14B.13C.12D.10

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.按照一定顺序排列的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an
一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…,为等比数列,其中a1=1,公比为q=3.
(1)等比数列3,6,12,…,的第6项是96.
(2)如果一个数列a1,a2,a3,a4,…,是等比数列,且公比为q.根据定义可得到:$\frac{{a}_{2}}{{a}_{1}}$=q,$\frac{{a}_{3}}{{a}_{2}}$=q,$\frac{{a}_{4}}{{a}_{3}}$=q,…,$\frac{{a}_{n}}{{a}_{n-1}}$=q.所以a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2,a4=a3•q=(a1•q2)•q=a1•q3,…,由此可得:an=a1•qn-1(用a1和q的代数式表示).
(3)若用Sn表示等比数列a1,a2,a3,a4,…,an,中前n项和.证明分两种情况:当q=1时,a2=a1,a3=a1,a4=a1,…,∴Sn=a1+a2+a3+…+an=na1
①根据q=1的证明方法,证明:当q≠1时,等比数列前n项和Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$成立.
②求(1)中等比数列S6的值.

查看答案和解析>>

同步练习册答案