精英家教网 > 初中数学 > 题目详情
(2012•绍兴)如图,矩形OABC的两边在坐标轴上,连接AC,抛物线y=x2-4x-2经过A,B两点.
(1)求A点坐标及线段AB的长;
(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒.
①当PQ⊥AC时,求t的值;
②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围.
分析:(1)已知抛物线的解析式,将x=0代入即可得A点坐标;由于四边形OABC是矩形,那么A、B纵坐标相同,代入该纵坐标可求出B点坐标,则AB长可求.
(2)①Q点的位置可分:在OA上、在OC上、在CB上 三段来分析,若PQ⊥AC时,很显然前两种情况符合要求,首先确定这三段上t的取值范围,然后通过相似三角形(或构建相似三角形),利用比例线段来求出t的值,然后由t的取值范围将不合题意的值舍去;
②当PQ∥AC时,△BPQ∽△BAC,通过比例线段求出t的值以及P、Q点的坐标,可判定P点在抛物线的对称轴上,若P、H1重合,此时有∠H1OQ=∠POQ,显然若做点H1关于OQ的对称点H2,那么亦可得到∠H2OQ=∠POQ,而题干要求的是∠HOQ>∠POQ,那么H1点以下、H2点以上的H点都是符合要求的.
解答:解:(1)由抛物线y=x2-4x-2知:当x=0时,y=-2,
∴A(0,-2).
由于四边形OABC是矩形,所以AB∥x轴,即A、B的纵坐标相同;
当y=-2时,-2=x2-4x-2,解得x1=0,x2=4,
∴B(4,-2),
∴AB=4.

(2)①由题意知:A点移动路程为AP=t,
Q点移动路程为7(t-1)=7t-7.
当Q点在OA上时,即0≤7t-7<2,1≤t<
9
7
时,
如图1,若PQ⊥AC,则有Rt△QAP∽Rt△ABC.
QA
AB
=
AP
BC
,即
7t-7
4
=
t
2

∴t=
7
5

7
5
9
7

∴此时t值不合题意.
当Q点在OC上时,即2≤7t-7<6,
9
7
≤t<
13
7
时,
如图2,过Q点作QD⊥AB.
∴AD=OQ=7(t-1)-2=7t-9.
∴DP=t-(7t-9)=9-6t.
若PQ⊥AC,易证Rt△QDP∽Rt△ABC,
QD
AB
=
DP
BC
,即
2
4
=
9-6t
2
,∴t=
4
3

9
7
4
3
13
7

∴t=
4
3
符合题意.
当Q点在BC上时,即6≤7t-7≤8,
13
7
≤t≤
15
7
时,
如图3,若PQ⊥AC,过Q点作QG∥AC,
则QG⊥PG,即∠GQP=90°.
∴∠QPB>90°,这与△QPB的内角和为180°矛盾,
此时PQ不与AC垂直.
综上所述,当t=
4
3
时,有PQ⊥AC.

②当PQ∥AC时,如图4,△BPQ∽△BAC,
BP
BA
=
BQ
BC

4-t
4
=
8-7(t-1)
2

解得t=2,即当t=2时,PQ∥AC.
此时AP=2,BQ=CQ=1,
∴P(2,-2),Q(4,-1).
抛物线对称轴的解析式为x=2,
当H1为对称轴与OP的交点时,
有∠H1OQ=∠POQ,
∴当yH<-2时,∠HOQ>∠POQ.
作P点关于OQ的对称点P′,连接PP′交OQ于点M,
过P′作P′N垂直于对称轴,垂足为N,连接OP′,
在Rt△OCQ中,∵OC=4,CQ=1.
∴OQ=
17

∵S△OPQ=S四边形ABCO-S△AOP-S△COQ-S△QBP=3=
1
2
OQ×PM,
∴PM=
6
17
17

∴PP′=2PM=
12
17
17

∵P′N∥OC,
∴∠NPP′=∠COQ.
∴△COQ∽△NPP′
CQ
OQ
=
P′N
PP′

∴P′N=
12
17
,PN=
48
17

∴P′(
46
17
14
17
),
∴直线OP′的解析式为y=
7
23
x,
∴OP′与NP的交点H2(2,
14
23
).
∴当yH
14
23
时,∠HOP>∠POQ.
综上所述,当yH<-2或yH
14
23
时,∠HOQ>∠POQ.
点评:函数的动点问题是较难的函数综合题,在解题时要寻找出关键点,然后正确的进行分段讨论,做到不重复、不漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•绍兴)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn-1Dn-2的中点为Dn-1,第n次将纸片折叠,使点A与点Dn-1重合,折痕与AD交于点Pn(n>2),则AP6的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绍兴)如图,扇形DOE的半径为3,边长为
3
的菱形OABC的顶点A,C,B分别在OD,OE,
DE
上,若把扇形DOE围成一个圆锥,则此圆锥的高为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绍兴)如图,矩形OABC的两条边在坐标轴上,OA=1,OC=2,现将此矩形向右平移,每次平移1个单位,若第1次平移得到的矩形的边与反比例函数图象有两个交点,它们的纵坐标之差的绝对值为0.6,则第n次(n>1)平移得到的矩形的边与该反比例函数图象的两个交点的纵坐标之差的绝对值为
14
5n(n+1)
6
5n(n+1)
14
5n(n+1)
6
5n(n+1)
(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绍兴)如图1,某超市从一楼到二楼的电梯AB的长为16.50米,坡角∠BAC为32°.
(1)求一楼与二楼之间的高度BC(精确到0.01米);
(2)电梯每级的水平级宽均是0.25米,如图2.小明跨上电梯时,该电梯以每秒上升2级的高度运行,10秒后他上升了多少米(精确到0.01米)?备用数据:sin32°=0.5299,cos32°=0.8480,tan32°=0.6249.

查看答案和解析>>

同步练习册答案