精英家教网 > 初中数学 > 题目详情
3.下列判断错误的是(  )
A.对角线互相垂直且相等的平行四边形是正方形
B.对角线互相垂直平分的四边形是菱形
C.对角线相等的四边形是矩形
D.对角线互相平分的四边形是平行四边形

分析 根据正方形、菱形,矩形以及平行四边形的判定定理进行判断.

解答 解:A、对角线互相垂直且相等的平行四边形是正方形,故本选项错误;
B、对角线互相垂直平分的四边形是菱形,故本选项错误;
C、对角线相等的四边形不一定是矩形,例如:等腰梯形的对角线相等,故本选项正确;
D、对角线互相平分的四边形是平行四边形,故本选项错误;
故选:C.

点评 此题考查了正方形的判定.注意对角线互相平分的四边形是平行四边形;对角线相等的平行四边形是矩形;对角线互相垂直的矩形是正方形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.随着科技的发展,电动汽车的性能得到显著提高,某市对市场上电动汽车的性能进行随机抽样调查,现随机抽取部分电动汽车,记录其一次充电后行驶的里程数,并将抽查数据绘制成如下频数分布直方表和条形统计图.
根据以上信息回答下列问题:
组别行驶里程x(千米)频数(台)频率
A  x<200180.15
B200≤x<21036a
C210≤x<22030  0.25
D220≤x<230b  0.20
E  x≥230120.10
根据以上信息回答下列问题:
(1)填空:a=0.3,b=24;
(2)请将条形统计图补充完整;
(3)若该市市场上的电动汽车有2000台,请你估计电动汽车一次充电后行驶的里程数在220千米及以上的台数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.小东根据学习函数的经验,对函数y=$\frac{4}{(x-1)^{2}+1}$图象与性质进行了探究,下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数y=$\frac{4}{(x-1)^{2}+1}$的自变量x的取值范围是全体实数;
(2)如表是y与x的几组对应值.
x-2-1-$\frac{1}{2}$0$\frac{1}{2}$1$\frac{3}{2}$2$\frac{5}{2}$34
y$\frac{2}{5}$$\frac{4}{5}$$\frac{16}{13}$2$\frac{16}{5}$4$\frac{16}{5}$2$\frac{16}{13}$$\frac{4}{5}$m
表中m的值为$\frac{2}{5}$;
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出函数y=$\frac{4}{(x-1)^{2}+1}$的大致图象;

(4)结合函数图象,请写出函数y=$\frac{4}{(x-1)^{2}+1}$的一条性质:①图象位于一二象限,②当x=1时,函数由值最大4,③当x<1时,y随x的增大而增大,④当x>1时,y随x的增大而减小,⑤图象与x轴没有交点.
(5)解决问题:如果函数y=$\frac{4}{(x-1)^{2}+1}$与直线y=a的交点有2个,那么a的取值范围是0<a<4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.在平面直角坐标系中,小明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是(100,33).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.秋收起义广场是为纪念秋收起义而建设的纪念性广场,位于萍乡城北新区,占地面积约为109000平方米,将数据109000用科学记数法表示为1.09×105

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.(1)解方程:$\frac{1}{x-1}$=$\frac{3}{{x}^{2}-1}$
(2)解不等式组:$\left\{\begin{array}{l}{x-2(x-3)<6}\\{x-1≤\frac{x+1}{3}}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.化简:(x-4+$\frac{4}{x}$)÷(1-$\frac{2}{x}$),并从0,1,2,中直接选择一个合适的数代入x求值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示,平行四边形ABCD中,∠B=60°,将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,角的两边所在的两直线分别交线段AB、AD于点E、F(不包括线段的端点).
(1)问题发现:
如图1,若平行四边形ABCD为菱形,
试猜想线段AE、AF、AC之间的数量关系AE+AF=AC,请证明你的猜想.
(2)类比探究:
如图2,若AB:AD=1:2,过点C作CH⊥AD于点H,求AE:FH的比值;
(3)拓展延伸:
如图3,若AB:AD=1:4,请直接写出(AE+4AF):AC的比值为$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,?ABCD中,AD=2AB,点E在BC边上,且CE=$\frac{1}{4}$AD,F为BD的中点,连接EF.
(1)当∠ABC=90°,AD=4时,连接AF,求AF的长;
(2)连接DE,若DE⊥BC,求∠BEF的度数;
(3)求证:∠BEF=$\frac{1}{2}$∠BCD.

查看答案和解析>>

同步练习册答案