【题目】如图,在四边形ABCD中,,,,,点P从点B出发,沿线段BA,向点A以的速度匀速运动;点Q从点D出发,沿线段DC向点C以的速度匀速运动,已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为.
(1)连结P、Q两点,则线段PQ长的取值范围是________;
(2)当cm时,求t的值;
(3)若在线段CD上有一点E,cm,连结AC和PE.请问是否存在某一时刻使得AC平分PE?若存在,求出t的值;若不存在,请说明理由.
【答案】(1);(2)t的值为2或;(3)存在某一时刻使得AC平分PE,此时t的值为4.
【解析】
(1)先确认线段PQ取最大值与最小值时点P、Q的位置,再根据矩形的性质、勾股定理求解即可;
(2)先根据勾股定理求出FQ的长,再根据分两种情况:点Q在点F左侧和点Q在点F右侧,然后根据图中的建立方程求解即可得;
(3)当AC平分PE时,先根据平行线的性质得出,再根据三角形全等的判定定理与性质得出,然后分点Q在点E左侧和点Q在点E右侧,分别建立方程求解即可得.
(1)四边形ABCD中,
四边形ABCD是直角梯形
由题意可知,在点P、Q运动过程中,当点P在点B处,点Q在点D处时,线段PQ取得最大值BD;当时,线段PQ取得最小值,此时
如图1,过点A作,连接BD,则四边形ABCM是矩形
则线段PQ长的取值范围是
故答案为:;
(2)点P运动到点A所需时间为;点Q运动到C所需时间为
由题意得,
如图2,过点P作,则四边形BCFP是矩形
因,则分以下两种情况:
①当点Q在点F左侧时,
即,解得,符合题意
②当点Q在点F右侧时,即点Q在点处
则,解得,符合题意
综上,t的值为2或;
(3)存在某一时刻使得AC平分PE,求解过程如下:
如图3,设AC与PE相交于点O
当AC平分PE时,
在和中,
由题意,分以下两种情况:
①当点Q在点E左侧时,
即,解得,符合题意
②当点Q在点E右侧时,即点Q在点处,
则,解得,不符题意,舍去
综上,存在某一时刻使得AC平分PE,此时t的值为4.
科目:初中数学 来源: 题型:
【题目】阅读理解:法国数学家韦达在研究一元二次方程时有一项重大发现:如果一元二次方程的两个根分别是,那么,.
例如:已知方程的两根分别是,
则:,.
请同学们阅读后利用以上结论完成以下问题:
(1)已知方程的两根分别是,求和的值;
(2)已知方程的两根分别是,且,求的值;
(3)若一元二次方程的一个根大于2,一个根小于2,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小亮从家出发步行到公交站台后,等公交车去学校,如图, 折线表示这个过程中行程 s (千米)与所花时间 t (分)之间的关系,下 列说法错误的是( )
A.他家到公交车站台需行 1 千米B.他等公交车的时间为 4 分钟
C.公交车的速度是 500 米/分D.他步行与乘公交车行驶的平均速度300米/分钟
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,两个完全相同的三角形纸片和重合放置,其中,.
(1)操作发现:如图2,固定,使绕点旋转,当点恰好落在边上时,填空:①线段与的位置关系是________;②设的面积为,的面积为,则与的数量关系是_____.
(2)猜想论证:当绕点旋转到如图3所示的位置时,请猜想(1)中与的数量关系是否仍然成立?若成立,请证明;若不成立,请说明理由.
(3)拓展探究:已知,平分,,,交于点(如图4).若在射线上存在点,使,请求相应的的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某种商品的标价为500元/件,经过两次降价后的价格为320元/件,并且两次降价的百分率相同.
(1)求该种商品每次降价的百分率;
(2)若该种商品进价为300元/件,两次降价后共售出此种商品100件,为使两次降价销售的总利润不少于3500元.问第一次降价后至少要售出该种商品多少件?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车租凭公司要购买轿车和面包车共辆,其中轿车最少要购买辆,轿车每辆万元,购头面包车每辆万元,公司可投入的购车资金不超过万元.
(1)符合公司要求的购买方案有几种?请说明理由;
(2)如果每辆轿车日租金为元,每辆面包车日租金为元,假设新购买的这辆汽车每日都可以全部租出,公司希望辆汽车的日租金最高,那么应该选择以上的哪种购买方案?且日租金最高为多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(a,﹣)在直线y=﹣上,AB∥y轴,且点B的纵坐标为1,双曲线y=经过点B.
(1)求a的值及双曲线y=的解析式;
(2)经过点B的直线与双曲线y=的另一个交点为点C,且△ABC的面积为.
①求直线BC的解析式;
②过点B作BD∥x轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com