精英家教网 > 初中数学 > 题目详情
如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为(即tan∠PCD=).

(1)求该建筑物的高度(即AB的长).
(2)求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)
解:(1)过点P作PE⊥BD于E,PF⊥AB于F,

又∵AB⊥BC于B,∴四边形BEPF是矩形。
∴PE=BF,PF=BE。
∵在Rt△ABC中,BC=90米,∠ACB=60°,
∴AB=BC•tan60°=90(米)。
∴建筑物的高度为90米。
(2)设PE=x米,则BF=PE=x米,
∵在Rt△PCE中,tan∠PCD
∴CE=2x。
∵在Rt△PAF中,∠APF=45°,∴AF=AB﹣BF=90﹣x,PF=BE=BC+CE=90+2x。
又∵AF=PF,∴90﹣x=90+2x,解得:x=30﹣30,
答:人所在的位置点P的铅直高度为(30﹣30)米。

试题分析:(1)过点P作PE⊥BD于E,PF⊥AB于F,在Rt△ABC中,求出AB的长度即可。
(2)设PE=x米,则BF=PE=x米,根据山坡坡度为,用x表示CE的长度,然后根据AF=PF列出等量关系式,求出x的值即可。 
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则BC两地之间的距离为 (    )
A.100mB.50mC.50mD.m

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,反比例函数的图象经过线段OA的端点A,O为原点,作AB⊥x轴于点B,点B的坐标为(2,0),tan∠AOB=

(1)求k的值;
(2)将线段AB沿x轴正方向平移到线段DC的位置,反比例函数的图象恰好经过DC的中点E,求直线AE的函数表达式;
(3)若直线AE与x轴交于点M、与y轴交于点N,请你探索线段AN与线段ME的大小关系,写出你的结论并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果,那么下列结
论正确的是【   】

 

 
A.csinA= a         B.b cosB=c       C.a tanA= b        D.ctanB= b

查看答案和解析>>

科目:初中数学 来源:不详 题型:计算题

计算:

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

计算的结果是【   】
A. B.4 C. D.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中, AC=6,BC=5,sinA=,则tanB=   

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2013年广东梅州11分)用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:

探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.
(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;
(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.
探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案