精英家教网 > 初中数学 > 题目详情

【题目】我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是(  )

A.84
B.336
C.510
D.1326

【答案】C
【解析】解:1×73+3×72+2×7+6=510,
故选C.
类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为(  )

A.
B.2
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人进行摸牌游戏.现有三张形状大小完全相同的牌,正面分别标有数字2,3,5.将三张牌背面朝上,洗匀后放在桌子上.
(1)甲从中随机抽取一张牌,记录数字后放回洗匀,乙再随机抽取一张.请用列表法或画树状图的方法,求两人抽取相同数字的概率;
(2)若两人抽取的数字和为2的倍数,则甲获胜;若抽取的数字和为5的倍数,则乙获胜.这个游戏公平吗?请用概率的知识加以解释.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了落实省新课改精神,我是各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出)
根据图中信息,解答下列问题:
(1)求被调查学生的总人数;
(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;
(3)根据调查结果,请你给学校提一条合理化建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班10名学生的校服尺寸与对应人数如表所示:

尺寸(cm)

160

165

170

175

180

学生人数(人)

1

3

2

2

2

则这10名学生校服尺寸的众数和中位数分别为( )
A.165cm,165cm
B.165cm,170cm
C.170cm,165cm
D.170cm,170cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:

(1)本次调查属于调查,样本容量是
(2)请补全频数分布直方图中空缺的部分;
(3)求这50名学生每周课外体育活动时间的平均数;
(4)估计全校学生每周课外体育活动时间不少于6小时的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,为五角星图案,图、图叫做蜕变的五角星.试回答以下问

(1)在图中,试证明∠A+∠B+∠C+∠D+∠E=180°;

(2)对于图或图,还能得到同样的结论吗?若能,请在图或图中任选其一证明你的发现;若不能,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(探究)如图,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.

(1)若∠ABC=50°,∠ACB=80°,则∠A=   度,∠P=   

(2)∠A∠P的数量关系为   ,并说明理由.

(应用)如图,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A∠Q的数量关系为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)

查看答案和解析>>

同步练习册答案