精英家教网 > 初中数学 > 题目详情
如图所示,过半径为6cm的⊙O外一点P引圆的切线PA,PB,连接PO交⊙O于F,过F作⊙O的切线,交PA,PB分别于D,E,如果PO=10cm,∠APB=40°.
求:(1)△PED的周长;(2)∠DOE的度数.
如右图所示

(1)连接AO,则OA⊥PA,PA=
PO2-OA2
=
102-62
=8,
∵PA,PB为切线,A,B为切点,EF,EB,DF,DA均与⊙O相切,
∴PA=PB,DA=DF,FE=BE,
∴△PED的周长=PE+EF+FD+PD=PA+PB=2PA=16(cm),
即△PED的周长为16cm;

(2)由切线长性质知:∠AOD=∠DOF,∠EOF=∠EOB,
∴∠DOE=
1
2
∠AOB=
1
2
(180°-∠APB)=
1
2
(180°-40°)=70°.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB,BC,CD分别与⊙O相切于E,F,G,且ABCD,BO=6cm,CO=8cm.求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠C=90°,以BC边为直径的⊙O交AB于点D,连接OD并延长交CA的延长线于点E,过点D作DF⊥OE交EC于点F.
(1)求证:AF=CF.
(2)若ED=2,sin∠E=
3
5
,求AD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=
3
,则图中阴影部分的面积是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,分别以AB、BC为直径的⊙O1、⊙O2,交于另一点D.
(1)证明:交点D必在AC上;
(2)如图甲,当⊙O1与⊙O2半径之比为4:3,且DO2与⊙O1相切时,判断△ABC的形状,并求tan∠O2DB的值;
(3)如图乙,当⊙O1经过点O2,AB、DO2的延长线交于E,且BE=BD时,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

△ABC中,∠C=90°,AB切⊙O于D,且DEBC,已知AE=2
2
,AC=3
2
,BC=6,则圆O的半径是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O是△ABC的外接圆,已知∠ACB=45°,∠ABC=120°,⊙O的半径为1,
(1)求弦AC、AB的长;
(2)若P为CB的延长线上一点,试确定P点的位置,使PA与⊙O相切,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙O半径为8cm,点A为半径OB延长线上一点,射线AC切⊙O于点C,弧BC的长为
8
3
π
cm,求线段AB的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,C是⊙O的直径AB延长线上一点,点D在⊙O上,且∠A=30°,∠BDC=
1
2
∠ABD.
(1)求证:CD是⊙O的切线;
(2)若OFAD分别交BD、CD于E、F,BD=2,求OE及CF的长.

查看答案和解析>>

同步练习册答案