精英家教网 > 初中数学 > 题目详情
(2005•吉林)如图1,一栋旧楼房由于防火设施较差,需要在侧面墙外修建简易外部楼梯,由地面到二楼,再由二楼到三楼,共两段(图2中AB、BC两段),其中BB′=3.2m,BC′=4.3m.结合图中所给的信息,求两段楼梯AB与BC的长度之和(结果保留到0.1m).(参考数据:sin30°=0.50,cos30°≈0.87,sin35°≈0.57,cos35°≈0.82)

【答案】分析:AB和BC在两个直角三角形中,又告知了两个直角三角形中的线段,利用三角函数就能求出相应的值.
解答:解:在Rt△ABB′中,BB′=3.2,∠BAB′=30度.
∵sin∠BAB'=
∴AB==6.40
在Rt△CBC′中,BC′=4.3,∠CBC′=35度.
∵cos∠CBC'=
∴BC=≈5.24
∴AB+BC≈6.40+5.24≈11.6(m).
答:两段楼梯长度之和为11.6m.
点评:本题考查锐角三角函数的应用.解决本题的关键是得到所求的线段的相应线段的长度.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2005•吉林)如图①,四边形ABCD是边长为5的正方形,以BC的中点O为原点,BC所在直线为x轴建立平面直角坐标系.抛物线y=ax2经过A、O、D三点,图②和图③是把一些这样的小正方形及其内部抛物线部分经过拼组得到的.

(1)a的值为______;
(2)图②中矩形EFGH的面积为______;
(3)图③中正方形PQRS的面积为______.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2005•吉林)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其中A点坐标为(-1,0).点C(0,5),D(1,8)在抛物线上,M为抛物线的顶点.
(1)抛物线的解析式为______;
(2)△MCB的面积为______.

查看答案和解析>>

科目:初中数学 来源:2005年吉林省中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•吉林)如图1,四边形ABCD是边长为5的正方形,以BC的中点O为原点,BC所在直线为x轴建立平面直角坐标系.抛物线y=ax2经过A,O,D三点,图2和图3是把一些这样的小正方形及其内部的抛物线部分经过平移和对称变换得到的.
(1)求a的值;
(2)求图2中矩形EFGH的面积;
(3)求图3中正方形PQRS的面积.

查看答案和解析>>

科目:初中数学 来源:2005年吉林省中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•吉林)如图,已知一抛物线形大门,其地面宽度AB=18m.一同学站在门内,在离门脚B点1m远的D处,垂直地面立起一根1.7m长的木杆,其顶端恰好顶在抛物线形门上C处.根据这些条件,请你求出该大门的高h.

查看答案和解析>>

科目:初中数学 来源:2005年吉林省中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•吉林)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,其中A点坐标为(-1,0).点C(0,5),D(1,8)在抛物线上,M为抛物线的顶点.
(1)抛物线的解析式为______;
(2)△MCB的面积为______.

查看答案和解析>>

同步练习册答案