【题目】问题提出
(1)如图①,在等腰Rt△ABC中,斜边AC=4,点D为AC上一点,连接BD,则BD的最小值为 ;
问题探究
(2)如图②,在△ABC中,AB=AC=5,BC=6,点M是BC上一点,且BM=4,点P是边AB上一动点,连接PM,将△BPM沿PM翻折得到△DPM,点D与点B对应,连接AD,求AD的最小值;
问题解决
(3)如图③,四边形ABCD是规划中的休闲广场示意图,其中∠BAD=∠ADC=135°,∠DCB=30°,AD=2km,AB=3km,点M是BC上一点,MC=4km.现计划在四边形ABCD内选取一点P,把△DCP建成商业活动区,其余部分建成景观绿化区.为方便进入商业区,需修建小路BP、MP,从实用和美观的角度,要求满足∠PMB=∠ABP,且景观绿化区面积足够大,即△DCP区域面积尽可能小.则在四边形ABCD内是否存在这样的点P?若存在,请求出△DCP面积的最小值;若不存在,请说明理由.
【答案】(1)2;(2);(3) 存在点P,使得△DCP的面积最小,△DCP面积的最小值是(
﹣20)km2.
【解析】
(1)如图1,当BD⊥AC时,BD的值最小,根据直角三角形斜边中线的性质可得结论;
(2)如图2,根据BM=DM可知:点D在以M为圆心,BM为半径的⊙M上,连接AM交⊙M于点D',此时AD值最小,计算AM和半径D'M的长,可得AD的最小值;
(3)如图3,先确定点P的位置,再求△DCP的面积;假设在四边形ABCD中存在点P,以BM为边向下作等边△BMF,可知:A、F、M、P四点共圆,作△BMF的外接圆⊙O,圆外一点与圆心的连线的交点就是点P的位置,并构建直角三角形,计算CD和PQ的长,由三角形的面积公式可求得面积.
解:(1)当BD⊥AC时,如图1,
∵AB=BC,
∴D是AC的中点,
∴BD=AC=
×4=2,即BD的最小值是2;
故答案为2;
(2)如图2,由题意得:DM=MB,
∴点D在以M为圆心,BM为半径的⊙M上,连接AM交⊙M于点D',此时AD值最小,
过A作AE⊥BC于E,
∵AB=AC=5,
∴BE=EC=BC=
,
由勾股定理得:AE=4,
∵BM=4,
∴EM=4﹣3=1,
∴AM= ,
∵D'M=BM=4,
∴AD'=AM﹣D'M= ﹣4,
即线段AD长的最小值是﹣4;
(3)如图3,假设在四边形ABCD中存在点P,
∵∠BAD=∠ADC=135°,∠DCB=30°,
∴∠ABC=360°﹣∠BAD﹣∠ADC﹣∠DCB=60°,
∵∠PMB=∠ABP,
∴∠BPM=180°﹣∠PBM﹣∠PMB=180°﹣(∠PBM+∠ABP)=180°﹣∠ABC=120°,
以BM为边向下作等边△BMF,作△BMF的外接圆⊙O,
∵∠BFM+∠BPM=60°+120°=180°,则点P在 上,
过O作OQ⊥CD于Q,交⊙O于点P,
设点P'是上任意一点,连接OP',过P'作P'H⊥CD于H,
可得OP'+P'H≥OQ=OP+PQ,即P'H≥PQ,
∴P即为所求的位置,
延长CD,BA交于点E,
∵∠BAD=∠ADC=135°,∠DCB=30°,∠ABC=60°,
∴∠E=90°,∠EAD=∠EDA=45°,
∵AD=2 ,
∴AE=DE=2,
∴BE=AE+AB=5,BC=2BE=10,CE=5,
∴BM=BC﹣MC=6,CD=5﹣2,
过O作OG⊥BM于G,
∵∠BOM=2∠BFM=120°,OB=OM,
∴∠OBM=30°,
∴∠ABO=∠ABM+∠MBO=90°,OB =2
,
∴∠E=∠ABO=∠OQE=90°,
∴四边形OBEQ是矩形,
∴OQ=BE=5,
∴PQ=OQ﹣OP=5﹣2,
∴S△DPC= ﹣20,
∴存在点P,使得△DCP的面积最小,△DCP面积的最小值是(﹣20)km2.
科目:初中数学 来源: 题型:
【题目】据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).
(1)图2中所缺少的百分数是_________;
(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是_________(填写年龄段);
(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是________;
(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有_______名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线与
轴交于
,
两点(点
在点
的左侧),与
轴交于点
,对称轴与
轴交于点
,点
在抛物线上.
(1)求直线的解析式.
(2)点为直线
下方抛物线上的一点,连接
,
.当
的面积最大时,连接
,
,点
是线段
的中点,点
是线段
上的一点,点
是线段
上的一点,求
的最小值.
(3)点是线段
的中点,将抛物线
与
轴正方向平移得到新抛物线
,
经过点
,
的顶点为点
,在新抛物线
的对称轴上,是否存在点
,使得
为等腰三角形?若存在,直接写出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为实现2020年全面脱贫的目标,我国实施“精准扶贫”战略,从而使贫困户的生活条件得到改善,生活质量明显提高.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,统计发现班上贫困家庭学生人数分别有2名,3名,4名,5名,6名,共五种情况.并将其制成了如下两幅不完整的统计图:
请回答下列问题:
(1)求该校一共有班级________个;在扇形统计图中,贫困家庭学生人数有5名的班级所对应扇形圆心角为________°;
(2)将条形图补充完整;
(3)甲、乙、丙是贫困生中的三名学生,学校决定从这三名学生中随机抽取两名代表到市里进行发言,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】汉江是长江最长的支流,在历史上占居重要地位,陕西省境内的汉江为汉江上游段.李琳利用热气球探测器测量汉江某段河宽,如图,探测器在A处观测到正前方汉江两岸岸边的B、C两点,并测得B、C两点的俯角分别为45°,30°已知A处离地面的高度为80m,河平面BC与地面在同一水平面上,请你求出汉江该段河宽BC.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某剧院举行专场音乐会,成人票每张20元,学生票每张5元. 暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案一:购买一张成人票赠送一张学生票;方案二:按总价的90%付款. 某校有4名老师带队,与若干名(不少于4人)学生一起听音乐会.设学生人数为人,
(
为整数).
(1)根据题意填表:
(2)设方案一付款总金额为元,方案二付款总金额为
元,分别求
,
关于
的函数解析式;
(3)根据题意填空:
①若用两种方案购买音乐会的花费相同,则听音乐会的学生有 人;
②若有60名学生听音乐会,则用方案 购买音乐会票的花费少;
③若用一种方案购买音乐会票共花费了元,则用方案 购买音乐会票,使听音乐的学生人数多.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点,
在反比例函数图象上,作直线
,连接
、
.
(1)求反比例函数的表达式和的值;
(2)求的面积;
(3)如图2,是线段
上一点,作
轴于点
,过点
作
轴的垂线,交反比例函数图象于点
,若
,求出点
的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在研究抛物线(
为常数)时,得到如下结论,其中正确的是( )
A.无论取何实数,
的值都小于0
B.该抛物线的顶点始终在直线上
C.当时,
随
的增大而增大,则
D.该抛物线上有两点,
,若
,
,则
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com