精英家教网 > 初中数学 > 题目详情
1.已知Rt△ABC中,∠C=90°,BC=3,AB=5,那么cos∠B的值是 (  )
A.$\frac{3}{5}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{4}{3}$

分析 根据余弦等于邻边比斜边,可得答案.

解答 解:cos∠B=$\frac{BC}{AB}$=$\frac{3}{5}$,
故选:A.

点评 本题考查了锐角三角函数的定义,熟记锐角三角函数的定义是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年浙江省七年级3月月考数学试卷(解析版) 题型:解答题

已知关于的方程组

(1)请写出方程的所有正整数解;

(2)若方程组的解满足,求的值;

(3)无论实数取何值,方程总有一个公共解,你能把求出这个公共解吗?

(4)如果方程组有整数解,求整数的值。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.抛物线与x轴交于A,B两点,(点B在点A的左侧)且A,B两点的坐标分别为(-2,0)、(8,0),与y轴交于点C(0,-4),连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线L交抛物线于点Q,交BD于点M.
(1)求抛物线的解析式;
(2)当点P在线段OB上运动时,试探究m为何值时,四边形CQMD是平行四边形?
(3)位于第四象限内的抛物线上是否存在点N,使得△BCN的面积最大?若存在,求出N点的坐标,及△BCN面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.阅读资料:
如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2-x1|2+|y2-y1|2,所以A,B两点间的距离为AB=$\sqrt{{{({x_2}-{x_1})}^2}+{{({y_2}-{y_1})}^2}}$.
我们知道,圆可以看成到圆心的距离等于半径的点的集合,如图2,在平面直角坐标系xOy中,A (x,y)为圆上任意一点,则点A到原点的距离的平方为OA2=|x-0|2+|y-0|2,当⊙O的半径OA为r时,⊙O的方程可写为:x2+y2=r2
问题拓展:
如果圆心坐标为P (a,b),半径为r,那么⊙P的方程可以写为(x-a)2+(y-b)2=r2
综合应用:
如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使∠POA=30°,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.
①证明AB是⊙P的切线;
②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以点Q为圆心,OQ长为半径的⊙Q的方程;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,一个上方无盖的正方体盒子紧贴地面,一只蚂蚁由盒外AE的中点处出发,沿着盒子面爬行到盒内的点C处,已知正方体的边长为4,问这只蚂蚁爬行的最短距离是10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知,抛物线C1:y=-$\frac{1}{2}$x2+mx+m+$\frac{1}{2}$.
(1)①无论m取何值,抛物线经过定点P(-1,0);
②随着m的取值的变化,顶点M(x,y)随之变化,y是x的函数,则函数C2的关系式为:y=$\frac{1}{2}$(x+1)2
(2)如图1,抛物线C1与x轴仅有一个公共点,请在图1画出顶点M满足的函数C2的大致图象,平行于y轴的直线l分别交C1、C2于点A、B,若△PAB为等腰直角三角形,判断直线l满足的条件,并说明理由;
(3)如图2,二次函数的图象C1的顶点M在第二象限、交x轴于另一点C,抛物线上点M与点P之间一点D的横坐标
为-2,连接PD、CD、CM、DM,若S△PCD=S△MCD,求二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AB=5,则CD=5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.
(1)直线BF垂直于CE于点F,交CD于点G(如图l),求证:AE=CG;
(2)直线AH垂直于CE,垂足为H,交CD的延长线于点M(如图2),找出图中与BE相等的线段(不需要添加辅助线),并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.当(a-$\frac{1}{2}$)2+2有最小值时,2a-3=-2.

查看答案和解析>>

同步练习册答案