精英家教网 > 初中数学 > 题目详情
26、如图(1),已知△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在A、E的异侧,BD⊥AE于D,CE⊥AE于E
(1)试说明:BD=DE+CE.
(2)若直线AE绕A点旋转到图(2)位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果;
(3)若直线AE绕A点旋转到图(3)位置时(BD>CE),其余条件不变,问BD与DE、CE的关系如何?请直接写出结果,不需说明理由.
分析:(1)证明△ABD≌△CAE,即可证得BD=AE,AD=CE,而AE=AD+DE=CE+DE,即可证得;
(2)(3)图形变换了,但是(1)中的全等关系并没有改变,因而BD与DE、CE的关系并没有改变.
解答:解:(1)证明:∵∠BAC=90°,
∴∠BAD+∠EAC=90°,
又∵BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∠BAD+∠ABD=90°,
∴∠ABD=∠EAC,
又∵AB=AC,
∴△ABD≌△CAE,
∴BD=AE,AD=CE,
∵AE=AD+DE=CE+DE,
∴BD=DE+CE.
(2)与(1)相同,可得,DE=BD+CE;
(3)与(1)相同,可得,DE=BD+CE.
点评:根据条件证明两个三角形全等是解决本题的关键,注意在图形的变化中找到其中不变的因素.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、中国足球队首次进入世界杯决赛圈,实现了近五十年的愿望.足球一般是由许多黑白相间的小皮块缝合而成的,黑块呈五边形,白块呈六边形(如图所示),已知黑块有12块,则白块有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

22、如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.
请按照小萍的思路,探究并解答下列问题:
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形;
(2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,?ABCD中,已知AB=9cm,AD=6cm,BE平分∠ABC交DC边于点E,则DE等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将一个长方形纸条折成如图的形状,若已知∠1=130°,则∠2=
65
65
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.
(1)已知AB∥CD,EF∥MN,且∠BOH=110°,求∠DHF和∠CGN的度数.
(2)请你观察(1)中的结果,找出其中的规律,并用文字表述出来.
(3)根据(2)中的结论,若两个角的两边分别平行,且其中一个角的度数是另一个角的2倍,求这两个角的度数.

查看答案和解析>>

同步练习册答案