精英家教网 > 初中数学 > 题目详情

(1)式子的值能否为0?为什么?

(2)式子的值能否为0?为什么?

答案:略
解析:

(1)分式值不能为0.因为把式子通分并合并后,得.当分式值为0时,,则,于是就有abc0,分式无意义.所以分式的值不能为0

(2)分式值不能为0.理由同(1)


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•河北)某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q=W+100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.
次数n 2 1
速度x 40 60
指数Q 420 100
(1)用含x和n的式子表示Q;
(2)当x=70,Q=450时,求n的值;
(3)若n=3,要使Q最大,确定x的值;
(4)设n=2,x=40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420?若能,求出m的值;若不能,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-
b
2a
4ac-b2
4a

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(河北卷)数学(带解析) 题型:解答题

某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q =" W" + 100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.

次数n
2
1
速度x
40
60
指数Q
420
100
(1)用含x和n的式子表示Q;
(2)当x = 70,Q = 450时,求n的值;
(3)若n = 3,要使Q最大,确定x的值;
(4)设n = 2,x = 40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420,若能,求出m的值;若不能,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是 

查看答案和解析>>

科目:初中数学 来源:2013年河北省中考数学试卷(解析版) 题型:解答题

某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q=W+100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.
次数n21
速度x4060
指数Q420100
(1)用含x和n的式子表示Q;
(2)当x=70,Q=450时,求n的值;
(3)若n=3,要使Q最大,确定x的值;
(4)设n=2,x=40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420?若能,求出m的值;若不能,请说明理由.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(河北卷)数学(解析版) 题型:解答题

某公司在固定线路上运输,拟用运营指数Q量化考核司机的工作业绩.Q =" W" + 100,而W的大小与运输次数n及平均速度x(km/h)有关(不考虑其他因素),W由两部分的和组成:一部分与x的平方成正比,另一部分与x的n倍成正比.试行中得到了表中的数据.

次数n

2

1

速度x

40

60

指数Q

420

100

(1)用含x和n的式子表示Q;

(2)当x = 70,Q = 450时,求n的值;

(3)若n = 3,要使Q最大,确定x的值;

(4)设n = 2,x = 40,能否在n增加m%(m>0)同时x减少m%的情况下,而Q的值仍为420,若能,求出m的值;若不能,请说明理由.

参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是 

 

查看答案和解析>>

同步练习册答案