精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,反比例函数(x>0)的图象和矩形ABCD的第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6) .

(1)直接写出B、C、D三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.

解:(1)B(2,4),C(6,4),D(6,6)。
(2)猜想矩形的A、C两顶点恰好同时落在反比例函数的图象上。
如图,矩形ABCD向下平移后得到矩形

设平移距离为a,则A′(2,6-a),C′(6,4-a)。
∵点A′,点C′在的图象上,
, 解得
∴矩形的平移距离为3,反比例函数的解析式为

解析试题分析:(1)根据矩形的对边平行且相等的性质即可得到B、C、D三点的坐标。
(2)从矩形的平移过程发现只有A、C两点能同时在双曲线上,设平移距离为a,得到A′(2,6-a),C′(6,4-a),代入中,得到关于a、k的方程组从而求得a、k的值,从而得到矩形的平移距离和反比例函数的解析式。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数的函数图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.
(1)求反比例函数的解析式;
(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定过点C;
(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知一次函数的图象与反比例函数的图象的两个交点是A(-2,-4),C(4,n),与y轴交于点B,与x轴交于点D.

(1)求反比例函数和一次函数的解析式;
(2)连结OA,OC,求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

定义:已知反比例函数,如果存在函数)则称函数为这两个函数的中和函数.
(1)试写出一对函数,使得它的中和函数为,并且其中一个函数满足:当时,的增大而增大.
(2) 函数的中和函数的图象和函数的图象相交于两点,试求当的函数值大于的函数值时的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

点P 在反比例函数 的图象上,它关于轴的对称点在一次函数的图象上,求此反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,科技小组准备用材料围建一个面积为60m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12m。设AD的长为xm,DC的长为ym。

(1)求y与x之间的函数关系式;
(2)若围成矩形科技园ABCD的三边材料总长不超过26m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.

(1)求反比例函数的解析式;
(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.

(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;
(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

将如图所示的图形剪去一个小正方形,使余下的部分恰好能折成一个正方体,应剪去____(填序号).

查看答案和解析>>

同步练习册答案