A. | 2π-4 | B. | 4-π | C. | π-2 | D. | 4π-8 |
分析 连接OC,作OM⊥BC,ON⊥AC,证明△OMG≌△ONH,则S四边形OGCH=S四边形OMCN,求得扇形FOE的面积,则阴影部分的面积即可求得.
解答 解:连接OC,作OM⊥BC,ON⊥AC.
∵CA=CB,∠ACB=90°,点O为AB的中点,
∴OC=$\frac{1}{2}$AB=2$\sqrt{2}$,四边形OMCN是正方形,OM=2.
则扇形FOE的面积是:$\frac{90π×(2\sqrt{2})^{2}}{360}$=2π.
∵OA=OB,∠AOB=90°,点D为AB的中点,
∴OC平分∠BCA,
又∵OM⊥BC,ON⊥AC,
∴OM=ON,
∵∠GOH=∠MON=90°,
∴∠GOM=∠HON,
则在△OMG和△ONH中,
$\left\{\begin{array}{l}{∠OMG=∠ONH}\\{∠GOM=∠HON}\\{OM=ON}\end{array}\right.$,
∴△OMG≌△ONH(AAS),
∴S四边形OGCH=S四边形OMCN=22=4.
则阴影部分的面积是:2π-4.
故选:A.
点评 本题考查了三角形的全等的判定与扇形的面积的计算的综合题,正确证明△OMG≌△ONH,得到S四边形OGCH=S四边形OMCN是解题的关键.
科目:初中数学 来源: 题型:解答题
组别 | 分组(单位:元) | 人数 |
A | 0≤x<30 | 4 |
B | 30≤x<60 | 16 |
C | 60≤x<90 | a |
D | 90≤x<120 | b |
E | x≥120 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com