精英家教网 > 初中数学 > 题目详情
如图,已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC(或其延长线)的距离分别为h1、h2、h3,△ABC的高为h.
在图(1)中,点P是边BC的中点,此时h3=0,可得结论:h1+h2+h3=h.
在图(2),(3),(4),(5)中,点P分别在线段MC上、MC延长线上、△ABC内、△ABC外.
(1)请探究:图(2),(3),(4),(5)中,h1、h2、h3、h之间的关系;(直接写出结论)图②-⑤中的关系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;
(2)证明图(2)所得结论;
(3)证明图(4)所得结论;
(4)(附加题2分)在图(6)中,若四边形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,点P在梯形内,且点P到四边BR、RS、SC、CB的距离分别是h1、h2、h3、h4,桥形的高为h,则h1、h2、h3、h4、h之间的关系为:h1+h3+h4=
mh
m-n
.图(4)与图(6)中的等式有何关系.
(1)图②-⑤中的关系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;(4分)

(2)图②中,h1+h2+h3=h.
证法一:
∵h1=BPsin60°,h2=PCsin60°,h3=0,(6分)
∴h1+h2+h3=BPsin60°+PCsin60°
=BCsin60°
=ACsin60°
=h.(8分)
证法二:连接AP,则S△APB+S△APC=S△ABC.(6分)
1
2
AB×h1+
1
2
AC×h2=
1
2
BC×h

又h3=0,AB=AC=BC,
∴h1+h2+h3=h;(8分)

证明:(3)图④中,h1+h2+h3=h.
过点P作RSBC与边AB、AC相交于R、S.(9分)在△ARS中,由图②中结论知:h1+h2+0=h-h3
∴h1+h2+h3=h.(10分)
说明:(2)与(3)问,通过作辅助线,利用证全等三角形的方法类似给分;

(4)由(3)可知:h1+h3+h4=
mh
m-n
.(11分)
让R、S延BR、CS延长线向上平移,当n=0时,图⑥变为图④,上面的等式就是图④中的等式,所以上面结论是图④中结论的推广.(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,∠AQN等于多少度?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

正六边形被三组平行线划分成小的正三角形,则图中全体正三角形的个数是(  )
A.24B.36C.38D.76

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知等边三角形△ABC和点P,过点P作三边AB、AC、BC的平行线分别交AC、BC、AB于F、G、E,如图①,点P在BC边上可得PE+PF+PG=BC.当点P在△ABC内部时(如图②),点P在△ABC外部时如图③,这两种情况下是否还存在PE+PF+PG=BC的结论?若成立请给予证明,若不成立,那么PE、PF、PG与BC又有怎样的关系,请写出你的猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC是等边三角形,过AB边上一点D作BC的平行线交AC于E,则△ADE的三个内角______等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,△ABC和△ECD均为等边三角形,B、C、D三点共线,AD与BE交于点O.求∠BOD的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC为等边三角形,BC⊥CD,且AC=CD,则∠BAD的度数是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,∠MON=90°,边长为2的等边三角形ABC在∠MON内部,但两顶点A、B分别在边OM、ON上滑动,点D是AB边中点
(1)求CD的长度;
(2)探究:△ABC在滑动的过程中,点C与点O之间的最大距离是多少.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,P是等边三角形ABC内一点,将△ABP绕点B顺时针方向旋转60°,得到△CBP′,若PB=3,则PP′=______.

查看答案和解析>>

同步练习册答案