精英家教网 > 初中数学 > 题目详情

【题目】小明的作业本上有四道利用不等式的性质,将不等式化为xaxa的作业题:①由x78解得x1②由x2x3解得x3③由3x1x7解得x4④由-3x>-6解得x<-2.其中正确的有( )

A. 1 B. 2

C. 3 D. 4

【答案】B

【解析】①不等式的两边都减7,得x>1,故①正确;

不等式两边都减(x+3),得x>-3,故错误;

不等式的两边都加(1-x),得2x>8,不等式的两边都除以2,得x>4,故正确;

④不等式的两边都除以-3,得x<2,故错误

所以正确的有2题,

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】边长都为整数的△ABC≌△DEF ,AB与DE是对应边,AB=2,BC=4,若△DEF的周长为偶数,则 DF的取值为( )
A.3
B.4
C.5
D.3或4或5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m

1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;

2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?

3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一居民楼底部B与山脚P位于同一水平线上,小李在P处测得居民楼顶A的仰角为60°,然后他从P处沿坡角为45°的山坡向上走到C处,这时,PC=30 m,点C与点A恰好在同一水平线上,点ABPC在同一平面内.

(1)求居民楼AB的高度;

(2)求C、A之间的距离.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明。
已知:如图,BE∥CD,∠A=∠1,
求证:∠C=∠E。

证明:∵BE∥CD (已知 )
∴∠2=∠C ( )
又 ∵∠A=∠1 (已知 )
∴ AC∥DE ( )
∴ ∠2=∠E( )
∴∠C=∠E ( )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x满足-5x5<-10,则x的范围是_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分12分)已知,直线AP是过正方形ABCD顶点A的任一条直线(不过BCD三点),点B关于直线AP的对称点为E,连结AEBEDE,直线DE交直线AP于点F

1)如图1,直线AP与边BC相交.

∠PAB=20°,则∠ADF= °∠BEF= °

请用等式表示线段ABDFEF之间的数量关系,并说明理由;

2)如图2,直线AP在正方形ABCD的外部,且,求线段AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若点P从点B出发以2cm/s的速度向点A运动,点Q从点A出发以1cm/s的速度向点C运动,设P、Q分别从点B、A同时出发,运动的时间为ts.
(1)用含t的式子表示线段AP、AQ的长;
(2)当t为何值时,△APQ是以PQ为底边的等腰三角形?
(3)当t为何值时,PQ∥BC?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业2018年初获利润300万元,到2020年初计划利润达到507万元,求这两年的年利润的平均增长率,设企业这两年的年利润平均增长率为x,则可列方程为(  )

A. 3001+x2507B. 3001x2507

C. 3001+2x)=507D. 3001+x2)=507

查看答案和解析>>

同步练习册答案