精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,已知三点A(0,a),B(b,0),C(b,c),其中a,b,c满足关系式|a-2|+(b-3)2=0,c=2b-a;
(1)求a,b,c的值.
(2)如果在第二象限内有一点P(m,1),请用含m的式子表示四边形ABOP的面积;若四边形ABOP的面积与△ABC的面积相等,请求出点P的坐标;
附加题:
(3)若B,A两点分别在x轴,y轴的正半轴上运动,设∠BAO的邻补角的平分线和∠ABO的邻补角的平分线相交于第一象限内一点Q,那么,点A,B在运动的过程中,∠AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由.
(4)是否存在一点N(n,-1),使AN+NC距离最短?如果有,请求出该点坐标,如果没有,请说明理由.
分析:(1)先根据非负数的性质求得a、b的值,再代入c=2b-a即可求出c的值;
(2)由于点P(m,1)在第二象限,所以四边形ABOP的面积=△AOP的面积+△AOB的面积;先根据三角形的面积公式求出△ABC的面积,再由四边形ABOP的面积与△ABC的面积相等列出关于m的方程,解方程求出m的值即可;
(3)根据角平分线的定义、三角形内角和定理及外角的性质求出∠AQB=45°,则∠AQB的大小不会发生变化;
(4)先作出点A关于直线y=-1的对称点A′(0,-4),连接A′C,交直线y=-1于点N,则AN+NC距离最短,再运用待定系数法求出直线A′C的解析式,将y=-1代入,求出的x的值即为N得到横坐标.
解答:解:(1)∵|a-2|+(b-3)2=0,
∴a-2=0,b-3=0,
解得a=2,b=3.
将a=2,b=3代入c=2b-a,得
c=2×3-2=4.
故a=2,b=3,c=4;

(2)如图.如果在第二象限内有一点P(m,1),
那么四边形ABOP的面积=△AOP的面积+△AOB的面积
=
1
2
×2×(-m)+
1
2
×3×2
=3-m;
∵△ABC的面积=
1
2
×4×3=6,
∴3-m=6,解得m=-3,
∴点P的坐标(-3,1);

附加题:
(3)如图.∠AQB的大小不会发生变化,理由如下:
∵∠BAO的邻补角的平分线和∠ABO的邻补角的平分线相交于第一象限内一点Q,
∴∠1=
1
2
∠DAB,∠2=
1
2
∠ABE,
∴∠AQB=180°-(∠1+∠2)
=180°-
1
2
(∠DAB+∠ABE)
=180°-
1
2
(90°+∠ABO+90°+∠BAO)
=180°-
1
2
(90°+90°+90°)
=45°.
∴∠AQB的大小不会发生变化;

(4)存在一点N(
9
8
,-1),使AN+NC距离最短.理由如下:
如图,作出点A(0,2)关于直线y=-1的对称点A′(0,-4),连接A′C,交直线y=-1于点N,则AN+NC距离最短.
设直线A′C的解析式为y=kx+t,
将点A′(0,-4),C(3,4)代入,
t=-4
3k+t=4

解得
k=
8
3
t=-4

所以直线A′C的解析式为y=
8
3
x-4,
当y=-1时,
8
3
x-4=-1,
解得x=
9
8

即点N的坐标为(
9
8
,-1).
故存在一点N(
9
8
,-1),使AN+NC距离最短.
点评:本题考查了非负数的性质,三角形的面积,三角形内角和定理,三角形外角的性质,轴对称-最短路线问题,运用待定系数法求函数的解析式,综合性较强,难度适中.根据非负数的性质求出a、b的值及运用轴对称的性质作出点N的位置是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案