分析 (1)设∠DBF=x,∠ABF=2x,∠BFC=3x,求得∠ABF=72°,∠BFC=108°,推出AB∥CD,根据平行线的性质即可得到结论;
(2)过B作BH⊥DF,根据三角形的面积公式列方程即可得到结论.
解答 解:(1)∵∠DBF:∠ABF:∠CFB=1:2:3,
∴设∠DBF=x,∠ABF=2x,∠BFC=3x,
∵∠ABE=72°,
∴∠ABF+∠BDF=3x=108°,
∴x=36°,
∴∠ABF=72°,∠BFC=108°,
∴∠ABF+∠BFC=180°,
∴AB∥CD,
∴∠BDF=∠ABE=72°;
(2)过B作BH⊥DF,
∵S△BDF=$\frac{1}{2}$DF•BH=20,
∵DF=5,
∴BH=8,
∴点B到直线CD的距离为8.
点评 本题考查了平行线的判定和性质,三角形的面积公式,熟练掌握平行线的性质定理是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
燃烧时间x(min) | 10 | 20 | 30 | 40 | 50 | … |
剩余长度y(cm) | 19 | 18 | 17 | 16 | 15 | … |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{3\sqrt{3}{n}^{2}}{{4}^{n}}$ | B. | $\frac{3\sqrt{3}{n}^{2}}{{2}^{n+1}}$ | C. | $\frac{3\sqrt{3}{n}^{2}}{{4}^{n+1}}$ | D. | $\frac{3\sqrt{3}{n}^{2}}{{2}^{n}}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com