精英家教网 > 初中数学 > 题目详情
10.解方程:$\frac{2}{2-x}$+x=$\frac{{x}^{2}}{x-2}$.

分析 分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答 解:去分母得:-2+x2-2x=x2
解得:x=-1,
经检验x=-1是分式方程的解.

点评 此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.在边长为1个单位长度的小正方形组成的3×3的正方形网格图①、图②中,各画一个顶点在格点上的平行四边形,要求:每个平行四边形均为轴对称图形,每个平行四边形至少有一条边长为$\sqrt{5}$,所画的两个四边形不全等.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解方程:(1)(2x+1)(x+2)=3;
              (2)(x-2)2+4x(x-2)=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.【阅读材料,获取新知】
善于思考的小军在解方程组
$\left\{\begin{array}{l}{2x+5y=3(1)}\\{4x+11y=5(2)}\end{array}\right.$时,采用了一种“整体代换法”的解法.
解:将方程(2)变形:4x+10y+y=5即2(2x+5y)+y=5(3)
把方程(1)代入(3)得:2×3+y=5
∴y=-1.
把y=-1,代入(1)得x=4
∴方程组的解为$\left\{\begin{array}{l}{x=4}\\{y=-1}\end{array}\right.$
【利用新知,解答问题】
请你利用小军的“整体代换法”解决一下问题:
(1)解方程组:
①$\left\{\begin{array}{l}{3x-2y=5}\\{9x-4y=19}\end{array}\right.$                   ②$\left\{\begin{array}{l}{2x-3y-2=0}\\{\frac{2x-3y+5}{7}+2y=9}\end{array}\right.$
(2)已知x,y满足方程组$\left\{\begin{array}{l}{{3x}^{2}-2xy+1{2y}^{2}=47}\\{{2x}^{2}+xy+{8y}^{2}=36}\end{array}\right.$,则x2+4y2与xy的值分别为17、2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.杨阳同学沿一段笔直的人行道行走,在由A处步行到达B处的过程中,通过隔离带的空隙O,刚好阅读完对面人行道宣传墙上的社会主义核心价值观标语CD,创设数学情境如下:
如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米,根据上述信息杨阳同学求出了标语CD的长度.(请将杨阳同学的解答过程补充完整)
解:因为AB∥DC,
所以∠ABO=∠CDO(依据是两直线平行,内错角相等)
又因为DO⊥CD,
所以∠CDO=90°,
所以∠ABO=90°,
所以BO⊥AB.
因为相邻两平行线间的距离相等,
所以BO=DO.
在△BOA和△DOC中,
∠ABO=∠CDO,
BO=DO,
∠AOB=∠COD,(依据是对顶角相等)
所以△BOA≌△DOC(ASA).
所以CD=AB=20米.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某校在设立学生奖学金时规定:综合成绩最高分获得一等奖、综合成绩包括智育成绩、德育成绩、体育成绩三项,这三项成绩分别按60%、30%、10%的比例计入综合成绩.现有小天、小颖两位同学入选奖学金一等奖的评选,他们的智育成绩、德育成绩、体育成绩如表,请通过计算判断谁能拿到一等奖.
学生体育成绩德育成绩学习成绩
小天88分84分90分
小颖90分85分88分

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图是一个5×5的正方形网格,每个小正方形的边长都是1,请在此网格中画出一个顶点都在格点且面积为17的正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.一个不透明的布袋里装有7个只有颜色不同的球,其中4个红球、3个白球,从布袋中随机摸出一个球,则摸到红球的概率是$\frac{4}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,在折纸活动中,小明制作了一张△ABC纸片,点D、E分别在边AB、AC上,将△ABC沿着DE折叠压平,使点A与点N重合.
(1)若∠B=35°,∠C=60°,求∠A的度数;
(2)若∠A=70°,求∠1+∠2的度数.

查看答案和解析>>

同步练习册答案