精英家教网 > 初中数学 > 题目详情
已知关于x的方程x2+3x+a=0的两个实数根的倒数和等于3,且关于x的方程(k-1)x2+3x-2a=0有实根,且k为正整数,正方形ABP1P2的顶点P1、P2在反比例函数y=
1+kx
(x>0)图象上,顶点A、B分别在x轴和y轴的正半轴上,求点P2的坐标.
分析:设方程x2+3x+a=0的两个实数根分别为m与n,利用根与系数的关系表示出m+n与mn,根据m与n的倒数和为3列出关系式,通分后利用同分母分式的加法法则计算后,将表示出的m+n及mn代入,可得出a的值,将a的值代入关于x的方程(k-1)x2+3x-2a=0,根据此方程有解,得到根的判别式大于等于0,列出关于k的不等式,求出不等式的解集得到k的范围,根据k为正整数得到k的值,确定出反比例函数y=
1+k
x
的解析式,根据反比例函数解析式设出P1的坐标,过P1作P1M垂直于y轴于M,过P2作P2N垂直于x轴于N,由正方形的性质及AAS可得出三个三角形全等,根据全等三角形的对应边相等可得出三组边相等,表示出ON与P2N,即表示出P2的坐标,将P2的坐标代入反比例解析式中得到关于a的方程,求出方程的解得到a的值,即可确定出此时P2的坐标.
解答:解:∵关于x的方程x2+3x+a=0的两个实数根的倒数和等于3,设方程的两根分别为m与n,
∴b2-4ac=9-4a≥0,即a≤
9
4
,m+n=-3,mn=a,
1
m
+
1
n
=
m+n
mn
=
-3
a
=3,即a=-1,
当k-1=0,即k=1时,方程的解为x=
2a
3
=-
2
3

当k-1≠0,即k≠1时,关于x的方程(k-1)x2+3x-2a=0有实根,
则b2-4ac=9-4(k-1)•(-2a)=9-8(k-1)≥0,即k≤
17
8

由k为正整数,得到k=2,
∴反比例解析式为y=
2
x
或y=
3
x

过点P1作P1M⊥y轴,过P2,作P2N⊥x轴,如图所示:

∵ABP1P2是正方形,
∴AB=AP2=BP1,∠BAP2=∠ABP1=90°,
∴∠BAO+∠P2AN=90°,又∠AP2N+∠P2AN=90°,
∴∠BAO=∠AP2N,
在△ABO和△P2AN中,
∠BAO=∠AP2N
∠BOA=∠ANP2=90°
AB=P2A

∴△ABO≌△P2AN(AAS),
同理△ABO≌△P1BM≌△P2AN,
当反比例解析式y=
2
x
时,设P1坐标为(a,
2
a
)(a>0),
∴MP1=OB=AN=a,MB=OA=NP2=
2
a
-a,
∴ON=OA+AN=
2
a
-a+a=
2
a
,又NP2=
2
a
-a,
∴P2的坐标为(
2
a
2
a
-a),
代入反比例解析式y=
2
x
得:
2
a
2
a
-a)=2,
解得:a=1或a=-1(舍去),
∴P2的坐标为(2,1);
当反比例解析式y=
3
x
时,设P1坐标为(a,
3
a
)(a>0),
∴MP1=OB=AN=a,MB=OA=NP2=
3
a
-a,
∴ON=OA+AN=
3
a
-a+a=
3
a
,又NP2=
3
a
-a,
∴P2的坐标为(
3
a
3
a
-a),
代入反比例解析式y=
3
x
得:
3
a
3
a
-a)=3,
解得:a=
6
2
或a=-
6
2
(舍去),
∴P2的坐标为(
6
6
2
),
综上,P2的坐标为(2,1)或(
6
6
2
).
点评:此题考查了反比例函数的性质,坐标与图形性质,正方形的性质,全等三角形的判定与性质,根与系数的关系,以及一元二次方程解的判断方法,利用了数形结合及分类讨论的数学思想,是一道多知识点的综合性题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、已知关于x的方程x2+kx+1=0和x2-x-k=0有一个根相同,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)已知关于x的方程x2-(m+2)x+(2m-1)=0.
(1)求证:方程恒有两个不相等的实数根;
(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•西城区二模)已知关于x的方程x2+3x=8-m有两个不相等的实数根.
(1)求m的最大整数是多少?
(2)将(1)中求出的m值,代入方程x2+3x=8-m中解出x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2(k+1)x+k2=0有两个实数根,求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-(3k+1)x+2k2+2k=0
(1)求证:无论k取何实数值,方程总有实数根.
(2)若等腰△ABC的一边长为a=6,另两边长b,c恰好是这个方程的两个根,求此三角形的周长.

查看答案和解析>>

同步练习册答案