精英家教网 > 初中数学 > 题目详情
(2011•化州市二模)如图,点O是△ABC的内切圆的圆心,∠BAC=80°,求∠BOC的度数.

【答案】分析:运用三角形内角和定理得出∠ABC+∠ACB的度数,再根据点O是△ABC的内切圆的圆心,得出∠OBC+∠OCB=50°,从而得出答案.
解答:解:∵∠BAC=80°,
∴∠ABC+∠ACB=180°-80°=100°,
∵点O是△ABC的内切圆的圆心,
∴BO,CO分别为∠ABC,∠BCA的角平分线,
∴∠OBC+∠OCB=50°,
∴∠BOC=130°.
点评:此题主要考查了三角形的内切圆与内心,准确运用三角形内心的性质,是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2011年广东省茂名市化州市中考数学二模试卷(解析版) 题型:解答题

(2011•化州市二模)如图在平面直角坐标系xoy中,正方形OABC的边长为2厘米,点A、C分别在y轴的负半轴和x轴的正半轴上.抛物线y=ax2+bx+c经过点A,B和点D(4,
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以2厘米/秒的速度向点B移动,同时点Q由B点开始沿BC边以1厘米/秒的速度向点C移动.若P、Q中有一点到达终点,则另一点也停止运动,设P、Q两点移动的时间为t秒,S=PQ2(厘米2)写出S与t之间的函数关系式,并写出t的取值范围,当t为何值时,S最小;
(3)当s取最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
(4)在抛物线的对称轴上求出点M,使得M到D,A距离之差最大?写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:2011年广东省茂名市化州市中考数学二模试卷(解析版) 题型:填空题

(2011•化州市二模)抛物线开口向下,则a=   

查看答案和解析>>

科目:初中数学 来源:2011年浙江省杭州市中考数学模拟试卷(37)(解析版) 题型:解答题

(2011•化州市二模)如图在平面直角坐标系xoy中,正方形OABC的边长为2厘米,点A、C分别在y轴的负半轴和x轴的正半轴上.抛物线y=ax2+bx+c经过点A,B和点D(4,
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以2厘米/秒的速度向点B移动,同时点Q由B点开始沿BC边以1厘米/秒的速度向点C移动.若P、Q中有一点到达终点,则另一点也停止运动,设P、Q两点移动的时间为t秒,S=PQ2(厘米2)写出S与t之间的函数关系式,并写出t的取值范围,当t为何值时,S最小;
(3)当s取最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.
(4)在抛物线的对称轴上求出点M,使得M到D,A距离之差最大?写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:2011年广东省茂名市化州市中考数学二模试卷(解析版) 题型:解答题

(2011•化州市二模)如图,点O是△ABC的内切圆的圆心,∠BAC=80°,求∠BOC的度数.

查看答案和解析>>

同步练习册答案