精英家教网 > 初中数学 > 题目详情

【题目】若两个二次函数的图象的顶点、开口方向都相同,则称这两个二次函数为“同类二次函数”.

1)请直接写出两个为“同类二次函数”的函数;

2)已知关于x的二次函数y1=(x+223y2ax2+bx1,若y1+y2y1为“同类二次函数”,求函数y2的表达式,并求出当﹣3x0时,y2的最大值.

【答案】1)它们是“同类二次函数”;(2)函数y2的表达式为y2=﹣x2x1,当﹣3x0时,y2的最大值为0

【解析】

1)根据“同类二次函数”的定义即可写出;
2)根据y1+y2y1为“同类二次函数”,列式即可求函数y2的表达式,再根据函数y2的表达式即可求解.

1)根据“同类二次函数”的定义可知:

y2x12+4y=(x12+4

顶点坐标都是(14),开口方向都向上,

所以它们是“同类二次函数”;

2)根据题意,得

y1+y2=(x+223+ax2+bx1

=(1+ax2+b+4x

y1+y2y1为“同类二次函数”,

1+a0,得a>﹣1

解得(不符合题意,舍去)

y2=﹣x2x1=﹣x22

因为顶点坐标为(20),

当﹣3x0y2的最大值为0

答:函数y2的表达式为y2=﹣x2x1,当﹣3x0时,y2的最大值为0

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线经过E(45)F2,-3),G(-25),H1,-4)四个点,选取其中两点用待定系数法能求出该抛物线解析式的是(

A.EFB.FGC.FHD.EG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中 过点A作AEDC,垂足为E,连接BE,F为BE上一点,且AFE=D.

(1)求证:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过点A(﹣10),B30),C03)三点.

1)求抛物线的解析式;

2)点M是线段BC上的点(不与BC重合),过MNMy轴交抛物线于N,若点M的横坐标为m,请用含m的代数式表示MN的长;

3)在(2)的条件下,连接NBNC,是否存在点m,使△BNC的面积最大?若存在,求m的值和△BNC的面积;若不存在,说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A在第一象限,点C的坐标为(10),△AOC是等边三角形,现把△AOC按如下规律进行旋转:第1次旋转,把△AOC绕点C按顺时针方向旋转120°后得到△A1O1C,点A1O1分别是点AO的对应点,第2次旋转,把△A1O1C绕着点A1按顺时针方向旋转120°后得到△A1O2C1,点O2C1分别是点O1C的对应点,第3次旋转,把△A1O2C1绕着点O2按顺时针方向旋转120°后得到△A2O2C2,点A2C2分别是点A1C1的对应点,……,依此规律,第6次旋转,把△A3O4C3绕着点O4按顺时针方向旋转120°后得到△A4O4C4,点A4C4分别是点A3C3的对应点,则点A4的坐标是(  )

A.B.60C.D.70

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,yx的增大而增大,且-2≤x≤1时,y的最大值为9,则a的值为  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年3月国际风筝节期间,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:

(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);

(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?

(3)当售价定为多少时,王大伯获得利润W最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图中是抛物线形拱桥,点P处有一照明灯,水面OA宽4 m,以O为原点,OA所在直线为x轴建立平面直角坐标系,已知点P的坐标为(3, ).

(1)点P与水面的距离是________m;

(2)求这条抛物线的表达式;

(3)当水面上升1 m后,水面的宽变为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,EAD的中点,已知△DEF的面积为S,则四边形ABCE的面积为(  )

A. 8S B. 9S C. 10S D. 11S

查看答案和解析>>

同步练习册答案