精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE与⊙O相切,交CB的延长线于E.
(1)判断直线AC和DE是否平行,并说明理由;
(2)若∠A=30°,BE=1cm,分别求线段DE和
BD
的长(直接写出最后结果).
分析:(1)平行.连接OD,∵DE与⊙O相切,得出OD⊥DE.根据BD是∠ABE的平分线,推出∠ODB=∠DBE,得到OD∥BE.推出BE⊥DE,根据AB是⊙O的直径,得到AC⊥CE,即可推出答案;
(2)由∠A=30°,根据三角形的外角性质求出∠DBE,即可求出DE,根据弧长公式即可求出弧BD的长.
解答:精英家教网(1)答:直线AC和DE平行.
理由是:
连接OD,∵DE与⊙O相切,
∴OD⊥DE.
∵OB=OD,
∴∠ODB=∠OBD,
∵BD是∠ABE的平分线,
即∠ABD=∠DBE,
∴∠ODB=∠DBE,
∴OD∥BE.
∴BE⊥DE,即DE⊥CE,
∵AB是⊙O的直径,点C在⊙O上,
∴AC⊥CE,
∴AC∥DE.

(2)答:线段DE的长是
3
BD
的长是
3
点评:本题主要考查对切线的性质,三角形的外角性质,三角形的角平分线,平行线的判定,圆周角定理,弧长公式,等腰三角形的性质等知识点的理解和掌握,综合运用这些性质进行推理是证此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案