精英家教网 > 初中数学 > 题目详情
如图,正方形CEFG的对角线CF在正方形ABCD的边BC的延长线上(CE>BC),点M在CF上,且MF=AB,线段AF与DM交于点N.
(1)求证:DN=MN
(2)探究线段NG、MD的数量和位置关系,并加以证明.
分析:(1)由已知条件CEFG的对角线CF在正方形ABCD的边BC的延长线上,可以知道AD∥BF,进而得到角相等证明△ADN≌△FMN,就可以得出结论.
(2)连接GD、GM,证明三角形全等可以得到△GDM是等腰直角三角形,且DN=MN,可以得出NG、MD的位置关系和数量关系.
解答:(1)证明:∵四边形ABCD是正方形,
∴AB=AD=CD,AD∥BF,
∴∠3=∠4,∠AND=∠FNM,
∵MF=AB,
∴AD=CD=MF,
∴△ADN≌△FMN,
∴DN=MN.

(2)GN⊥DM,DM=2GN.
证明:连接GD、GM,
∵四边形CEFG是正方形,
∴GC=GF,∠CGF=90°,∠GFM=∠GCF=45°,
∴∠DCG=45°,
∴∠DCG=∠GFM,
∵CD=MF,
∴△GDC≌△GMF
∴GD=GM,∠1=∠2,
∵∠2+∠CGM=90°,
∴∠1+∠CGM=90°
∴∠DGM=90°,
∵DN=MN.
∴GN⊥DM,DM=2GN.
点评:本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、正方形ABCD和正方形CEFG,M为AF的中点,连接MD、ME.
(1)如图,B、C、G依次在同一条直线上,求证:△MDE等腰直角三角形;

(2)如图,正方形CEFG绕顶点C旋转45°,使B、C、F依次在同一条直线上,则△MDE的形状是
等腰直角三角形


(3)如图,将正方形CEFG任意旋转,设∠DCE=α°,猜想△MDE的形状,写出你的结论并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD、正方形CEFG、正方形DMNG各自的一边围成了△DCG且∠DCG=Rt∠,正方形ABCD、正方形CEFG的面积分别为4cm2、12cm2,则正方形DMNG的面积为
16
16
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

正方形ABCD和正方形CEFG,M为AF的中点,连接MD、ME.
(1)如图,B、C、G依次在同一条直线上,求证:△MDE等腰直角三角形;

(2)如图,正方形CEFG绕顶点C旋转45°,使B、C、F依次在同一条直线上,则△MDE的形状是;

(3)如图,将正方形CEFG任意旋转,设∠DCE=α°,猜想△MDE的形状,写出你的结论并给予证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

正方形ABCD和正方形CEFG,M为AF的中点,连接MD、ME.
(1)如图,B、C、G依次在同一条直线上,求证:△MDE等腰直角三角形;

精英家教网

(2)如图,正方形CEFG绕顶点C旋转45°,使B、C、F依次在同一条直线上,则△MDE的形状是______;

精英家教网

(3)如图,将正方形CEFG任意旋转,设∠DCE=α°,猜想△MDE的形状,写出你的结论并给予证明.

精英家教网

查看答案和解析>>

同步练习册答案