如图,已知抛物线的图象,将其向右平移两个单位后得到图象.
(1)求图象所表示的抛物线的解析式:
(2)设抛物线和轴相交于点、点(点位于点的右侧),顶点为点,点位于轴负半轴上,且到轴的距离等于点到轴的距离的2倍,求所在直线的解析式.
见解析.
解析试题分析:(1)将抛物线y=﹣2x2﹣4x=﹣2(x+1)2+2的图象E,向右平移两个单位后得到图象F,
根据“左加又减,上加下减”规律,所以,图象F所表示的抛物线的解析式为y=﹣2(x+1﹣2)2+2,即y=﹣2(x﹣1)2+2;
(2)由抛物线y=﹣2(x﹣1)2+2,求出顶点C的坐标为(1,2).
令y=0得,﹣2(x﹣1)2+2=0,解得x=0或2,点B的坐标为(2,0).点位于轴负半轴上,所以,设A点坐标为(0,y),则y<0.又因为点A到x轴的距离等于点C到x轴的距离的2倍,即﹣y=2×2,解得y=﹣4,
所以,A点坐标为(0,﹣4).设AB所在直线的解析式为y=kx+b,把A(0,﹣4),B(2,0)的坐标代入,
解得,写出AB所在直线的解析式为y=2x﹣4.
试题解析:
(1)∵抛物线y=﹣2x2﹣4x=﹣2(x+1)2+2的图象E,将其向右平移两个单位后得到图象F,
∴图象F所表示的抛物线的解析式为y=﹣2(x+1﹣2)2+2,即y=﹣2(x﹣1)2+2;
(2)∵y=﹣2(x﹣1)2+2,
∴顶点C的坐标为(1,2).
当y=0时,﹣2(x﹣1)2+2=0,
解得x=0或2,
∴点B的坐标为(2,0).
设A点坐标为(0,y),则y<0.
∵点A到x轴的距离等于点C到x轴的距离的2倍,
∴﹣y=2×2,解得y=﹣4,
∴A点坐标为(0,﹣4).设AB所在直线的解析式为y=kx+b,
由题意,得,
解得,
∴AB所在直线的解析式为y=2x﹣4.
考点:1.待定系数法求直线的解析式。2. 抛物线的图象和性质
科目:初中数学 来源: 题型:解答题
如图,抛物线与x轴交于点A(-1,0)、B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式及顶点D的坐标;
(2)若点P是抛物线第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为 时,四边形PQAC是平行四边形;当点P的坐标为 时,四边形PQAC是等腰梯形. (利用备用图画图,直接写出结果,不写求解过程).
(3)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完,该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售数量x(千件)的关系为:若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为:
(1)用x的代数式表示t为:t= ;当0<x≤4时, y2与x的函数关系为y2= ;当 ≤x< 时,y2=100;
(2)求每年该公司销售这种健身产品的总利润w(千元)与国内的销售数量x(千件)的函数关系式,并指出x的取值范围;
(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
(本小题满分12分)如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点 (填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某玩具批发商销售每件进价为40元的玩具,市场调查发现,若以每件50元的价格销售,平均每天销售90件,单价每提高1元,平均每天就少销售3件.
(1)平均每天的销售量y(件)与销售价x(元/件)之间的函数关系式为 ;
(2)求该批发商平均每天的销售利润W(元)与销售价x(元/件)之间的函数关系式;
(3)物价部门规定每件售价不得高于55元,当每件玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
中秋节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.
九(1)班数学建模兴趣小组根据调查,整理出第x天()的捕捞与销售的相关信息如下:
鲜鱼销售单价(元/kg) | 20 |
单位捕捞成本(元/kg) | |
捕捞量(kg) | 950-10x |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知抛物线与轴交于点.
(1)平移该抛物线使其经过点和点(2,0),求平移后的抛物线解析式;
(2)求该抛物线的对称轴与(1)中平移后的抛物线对称轴之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知抛物线(b,c是常数,且c<0)与x轴分别交于点A,B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).
(1)b= ,点B的横坐标为 (上述结果均用含c的代数式表示);
(2)连接BC,过点A作直线AE∥BC,与抛物线交于点E.点D是x轴上一点,其坐标为
(2,0),当C,D,E三点在同一直线上时,求抛物线的解析式;
(3)在(2)的条件下,点P是x轴下方的抛物线上的一动点,连接PB,PC,设所得△PBC的面积为S.
①求S的取值范围;
②若△PBC的面积S为整数,则这样的△PBC共有 个.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图.在平面直角坐标系中,边长为的正方形ABCD的顶点A、B在x轴上,连接OD、BD、△BOD的外心I在中线BF上,BF与AD交于点E.
(1)求证:△OAD≌△EAB;
(2)求过点O、E、B的抛物线所表示的二次函数解析式;
(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;
(4)连接OE,若点M是直线BF上的一动点,且△BMD与△OED相似,求点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com