精英家教网 > 初中数学 > 题目详情
4.若关于x的方程x2+(k-2)x+k2=0的两根互为倒数,则k为(  )
A.1B.-1C.±1D.-2

分析 根据已知和根与系数的关系x1x2=$\frac{c}{a}$得出k2=1,求出k的值,再根据原方程有两个实数根,求出符合题意的k的值.

解答 解:∵x1x2=k2,两根互为倒数,
∴k2=1,
解得k=1或-1;
∵方程有两个实数根,△>0,
当k=1时,判别式小于0舍去,当k=-1时,判别式大于0符合题意.
故选B.

点评 本题考查了根与系数的关系,根据x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$进行求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.已知a-b=3,a-c=$\root{3}{26}$,求(c-b)[(a-b)2+(a-c)(a-b)+(a-c)2]的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.若直线y=1与抛物线y=ax2+b交于A,B两点,且A点坐标为(-2,c),则B的坐标为(2,1).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.当a为(  )值时,不等式a(x-3)<2(a-x)的解集为x<4.
A.a=8B.a=-8C.a<8D.a>-8

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知a,b分别为等腰三角形的两条边长,且a•b满足b=4+$\sqrt{3a-6}$+3$\sqrt{2-a}$,求此三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列各数:3.14159,-$\root{3}{8}$,0.3131131113…(相邻两个3之间1的个数逐次加1),-π,$\sqrt{256}$,-$\frac{1}{7}$.其中无理数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知P(-3,-4),则P点到y轴的距离为(  )
A.5B.4C.3.5D.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.a、b为有理数,请判断|a+b|、|a|+|b|及|a|-|b|的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.2$\sqrt{\frac{1}{2}}$-6$\sqrt{\frac{1}{3}}$+$\sqrt{8}$的结果是3$\sqrt{2}$-2$\sqrt{3}$.

查看答案和解析>>

同步练习册答案