½â£º£¨1£©µ±m=1ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
£¬
¡àµãA
1µÄ×ø±êΪ£¨1£¬1£©£¬µãA
2µÄ×ø±êΪ£¨2£¬
£©£¬
°ÑµãA
1£¨1£¬1£©£¬µãA
2£¨2£¬
£©´úÈëy=k
1x+b
1µÃ
k
1+b
1=1¢Ù£¬
2k
1x+b
1=
¢Ú
¡à¢Ú-¢ÙµÃk
1=
-1=-
£»
¹Ê´ð°¸Îª-
£»
£¨2£©µ±m=1ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
£¬
µãA
1µÄ×ø±êΪ£¨1£¬1£©£¬µãA
2µÄ×ø±êΪ£¨2£¬
£©£¬µãA
3µÄ×ø±êΪ£¨3£¬
£©£¬µãA
4µÄ×ø±êΪ£¨4£¬
£©£¬
Ó루1£©Ò»Ñù£¬k
2=
-
£¬k
3=
-
£¬
¡àk
1+k
2+k
3=
-1+
-
+
-
=-1+
=-
£»
¹Ê´ð°¸Îª-
£»
£¨3£©¢Ùµ±m=2ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
£¬
¡àµãA
1×ø±êΪ£¨1£¬2£©£¬µãA
2×ø±êΪ£¨2£¬
£©£¬µãA
3µÄ×ø±êΪ£¨3£¬
£©£¬µãA
4µÄ×ø±êΪ£¨4£¬
£©£¬¡£¬µãA
20×ø±êΪ£¨20£¬
£©£¬µãA
21×ø±êΪ£¨21£¬
£©£¬
Ó루1£©Ò»Ñù£¬k
1=
-
£¬k
2=
-
£¬k
3=
-
£¬¡£¬k
20=
-
£¬
¡àk
1+k
2+k
3+¡+k
20=
-
+
-
+
-
+¡+
-
=-2+
=-
£»
¢ÚµãA
1×ø±êΪ£¨1£¬m£©£¬µãA
2×ø±êΪ£¨2£¬
£©£¬µãA
3µÄ×ø±êΪ£¨3£¬
£©£¬µãA
4µÄ×ø±êΪ£¨4£¬
£©£¬¡£¬µãA
n×ø±êΪ£¨n£¬
£©£¬µãA
n+1×ø±êΪ£¨n+1£¬
£©£®
Ó루1£©Ò»Ñù£¬k
1=
-m£¬k
2=
-
£¬k
3=
-
£¬¡£¬k
n=
-
£¬
¡àk
1+k
2+k
3+¡+k
n=
-m+
-
+
-
+¡+
-
=-m+
=-
£®
·ÖÎö£º£¨1£©ÓÉ·´±ÈÀýº¯ÊýµÄ½âÎöʽy=
¿ÉÈ·¶¨µãA
1µÄ×ø±êΪ£¨1£¬1£©£¬µãA
2µÄ×ø±êΪ£¨2£¬
£©£¬ÔÙ°ÑËüÃÇ´úÈëy=k
1x+b
1µÃµ½k
1+b
1=1¢Ù£¬2k
1x+b
1=
¢Ú£¬È»ºóÓâÚ-¢Ù¿ÉÇóµÃk
1=
-1=-
£»
£¨2£©µ±m=1ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
£¬¿ÉÈ·¶¨µãA
1µÄ×ø±êΪ£¨1£¬1£©£¬µãA
2µÄ×ø±êΪ£¨2£¬
£©£¬µãA
3µÄ×ø±êΪ£¨3£¬
£©£¬µãA
4µÄ×ø±êΪ£¨4£¬
£©£¬Ó루1£©Ò»ÑùµÃµ½k
2=
-
£¬k
3=
-
£¬Ò׵õ½k
1+k
2+k
3掙术
£¨3£©¢Ùµ±m=2ʱ£¬·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=
£¬ÏÈÈ·¶¨µãA
1×ø±êΪ£¨1£¬2£©£¬µãA
2×ø±êΪ£¨2£¬
£©£¬µãA
3µÄ×ø±êΪ£¨3£¬
£©£¬µãA
4µÄ×ø±êΪ£¨4£¬
£©£¬¡£¬µãA
20×ø±êΪ£¨20£¬
£©£¬µãA
21×ø±êΪ£¨21£¬
£©£¬·ÂÕÕ£¨1£©µÃµ½k
1=
-
£¬k
2=
-
£¬k
3=
-
£¬¡£¬k
20=
-
£¬Ôòk
1+k
2+k
3+¡+k
20=
-
+
-
+
-
+¡+
-
£¬È»ºó½øÐмӼõÔËËã¼´¿É£»
¢ÚÏȵõ½µãA
1×ø±êΪ£¨1£¬m£©£¬µãA
2×ø±êΪ£¨2£¬
£©£¬µãA
3µÄ×ø±êΪ£¨3£¬
£©£¬µãA
4µÄ×ø±êΪ£¨4£¬
£©£¬¡£¬µãA
n×ø±êΪ£¨n£¬
£©£¬µãA
n+1×ø±êΪ£¨n+1£¬
£©£¬ÔÙͬÑù¿ÉµÃµ½k
1=
-m£¬k
2=
-
£¬k
3=
-
£¬¡£¬k
n=
-
£¬Ôòk
1+k
2+k
3+¡+k
n=
-m+
-
+
-
+¡+
-
£¬È»ºó½øÐзÖʽµÄ¼Ó¼õÔËËã¼´¿É£®
µãÆÀ£º±¾Ì⿼²éÁË·´±ÈÀýº¯Êý×ÛºÏÌ⣺µãÔÚ·´±ÈÀýº¯ÊýͼÏóÉÏ£¬ÔòµãµÄ×ø±êÂú×ãÆä½âÎöʽ£»ÔËÓôý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£»ÊìÁ·ÕÆÎÕ·ÖÊýÓë·ÖʽµÄÔËË㣮