解:(1)∵反比例函数
(m为常数)的图象经过点A(-1,6),
∴m=-1×6=-6,
∴m的值为-6.
∴反比例函数的解析式为:
.
(2)如图,作AF⊥x轴于F,作BE⊥x轴于E,
作BG⊥y轴于G,交AF于H,直线AC交y轴于D.
∵BG∥CO,∴∠ABH=∠BCF,
同理,∴∠BAH=∠CBE,
在Rt△BCE和Rt△ABH中
∴Rt△BCE≌Rt△ABH(AAS).
∴CE=BH,BE=AH.
又四边形BEFH为矩形,BH=EF,∴CE=EF.
由题意:AF=6,∴
.
∴点B的纵坐标为3.又点B在反比例函数
的图象上,
∴点B的横坐标为x=-2,即点B的坐标为(-2,3).
设直线AC的方程为y=kx+b,将A(-1,6)、B(-2,3)的坐标代入直线方程,
得
解方程组,得
,
∴直线AB的方程为y=3x+9.
令y=0,得x=-3,令x=0,得y=9.
∴点C、D的坐标为(-3,0)、(0,9),∴CO=3,OD=9.
由勾股定理得
.
设原点O到直线AB的距离为d,则由S
△COD=
×CO×DO=
×CD×d,
得3×9=3
×d,
∴
=
.
分析:(1)利用待定系数法求反比例函数解析式即可;
(2)首先作AF⊥x轴于F,作BE⊥x轴于E,作BG⊥y轴于G,交AF于H,直线AC交y轴于D,证明Rt△BCE≌Rt△ABH(AAS),即可得出B点坐标,求出直线AB的解析式,
由S
△COD=
×CO×DO=
×CD×d,求出即可.
点评:此题主要考查了反比例函数的综合应用以及全等三角形的判定与性质以及三角形面积等知识,得出直线AB的解析式利用三角形面积求出是解题关键.