精英家教网 > 初中数学 > 题目详情
如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路AB精英家教网-BC-CA运动,回到点A时,⊙O随着点O的运动而移动.
(1)若r=
3
厘米,求⊙O首次与BC边相切时,AO的长.
(2)在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况写出不同情况下X的取值范围及相应的切点个数.
(3)设⊙O在整个移动过程中,在△ABC内部、⊙O未经过的部分的面积为S,在S>0时,求S关于r的函数解析式,并写出自变量r的取值范围.
分析:(1)求AO的关键是求出BO,如果设与BC相切时切点为D的话,可在直角三角形BOD中用半径的长和∠ABC的正弦值求出BO的长,也就能求出AO的长了.
(2)考虑直线与圆的位置,只需考虑半径的长以及圆心到直线的距离即可.
当圆的半径正好等于等边三角形的高的时候,那么只有圆心在等边三角形三个顶点时,圆才与等边三角形相切;
当圆的半径小于高时(半径应大于0),在每一条边运动时都要与三角形的两边相切即切点有两个,那么走完3条边后切点应有6个;
当圆的半径大于高的时候,圆与三角形的三边相交或三角形在圆内,因此没有切点.
(3)本题的关键是求出内部三角形的边和相应的高.
根据题意我们不难得出内部的三角形应该和三角形ABC相似,即内部的三角形也应该是等边三角形.
如果设这个三角形为A′B′C′,那么可作出三角形ABC和A′B′C′的高来求解.
连接AA′并延长其交B′C′,BC于E,F,那么A′E就应该是内部三角形的高,如果求出了高就可以通过三角函数求出内部三角形的边长也就能求出它的面积,因此求A′E长就是解题的关键.
我们观察后发现,EF=r,而AF可以在三角形ABC中求出,那么关键是求A′A,可通过构建直角三角形求解.
过A′作A′G⊥AB于G,那么A′G=r,那么我们可根据∠A′AG的度数用三角函数和r表示出AA′,这样就能求出A′E和内部三角形的边长了,那么根据三角形的面积公式就能得出关于S,r的函数解析式了.
解答:解:(1)设⊙O首次与BC相切于点D,则有OD⊥BC.
且OD=r=
3

在直角三角形BDO中,
∵∠OBD=60°,
∴OB=
3
sin60°
=2.
∴AO=AB-OB=6-2=4(厘米);

(2)由正三角形的边长为6厘米.可得出它的一边上的高为3
3
厘米.
①当⊙O的半径r=3
3
厘米时,⊙O在移动中与△ABC的边共相切三次,即切点个数为3;
②当0<r<3
3
时,⊙O在移动中与△ABC的边相切六次,即切点个数为6;
③当r>3
3
时,⊙O与△ABC不能相切,即切点个数为0.

(3)如图,易知在S>0时,⊙O在移动中,在△ABC内部为经过的部分为正三角形.
记作△A′B′C′,这个正三角形的三边分别于原正三角形三边平行,且平行线间的距离等于r.
连接AA′,并延长AA′,分别交B′C′,BC于E,F两点.
则AF⊥BC,A′E⊥B′C′,且EF=r.
又过点A′作A′G⊥AB于G,则A′G=r.精英家教网
∵∠GAA′=30°,
∴AA′=2r.
∴△A′B′C′的高A′E=AF-3r=3
3
-3r,
B′C′=
2
3
3
A′E=2
3
3
-r).
∴△A′B′C′的面积S=
1
2
B′C′•A′E=3
3
3
-r)2
∴所求的解析式为S=3
3
3
-r)2(0<r<3).
点评:本题主要考查了直线与圆的位置关系、等边三角形的性质、解直角三角形等多个知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,正三角形ABC的边长为12,三个全等的小正三角形重心(即三条中线的交点)与正三角形ABC的顶点重合,且他们各有一边与正三角形ABC的一边平行.若小正三角形的边长为x,且0<x≤12,阴影部分的面积为S,则能反映S与x之间函数关系的大致图象是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正三角形ABC的边长为1cm,将线段AC绕点A顺时针旋转120°至AP1,形成扇形D1;将线段BP1绕点B顺时针旋转120°至BP2,形成扇形D2;将线段CP2绕点C顺时针旋转120°至CP3,形成扇形D3;将线段AP3绕点A顺时针旋转120°至AP4,形成扇形D4….设ln为扇形Dn的弧长(n=1,2,3…),回答下列问题:
(1)按照要求填表:
 1  4
ln         
(2)根据上表所反映的规律,试估计n至少为何值时,扇形Dn的弧长能绕地球赤道一周(设地球赤道半径为6400km).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正三角形ABC的边长为l,点M,N,P分别在边BC,AB上,设BM=x,CN=y,AP=z,且x+y+z=1.
(1)试用x,y,z表示△MNP的面积
(2)求△MNP面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•十堰)如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当
2
≤r<2时,S的取值范围是
π
2
-1≤S<
3
-
3
π
2
-1≤S<
3
-
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正三角形ABC内接于圆O,动点P在圆周的劣弧AB上,且不与A,B重合,则∠BPC=
60°
60°

查看答案和解析>>

同步练习册答案