精英家教网 > 初中数学 > 题目详情
某数学兴趣小组在学习了《锐角三角函数》以后,开展测量物体高度的实践活动,他们在河边的一点A测得河对岸小山顶上一座铁塔的塔顶C的仰角为66°、塔底B的仰角为60°,已知铁塔的高度BC为20m(如图),你能根据以上数据求出小山的高BD吗?若不能,请说明理由;若能,请求出小山的高BD.(精确到0.1m)

【答案】分析:在Rt△ABD中,知道∠BAD=60°,在Rt△ACD中知道∠CAD=66°,AD是Rt△ABD和Rt△ACD的公共边,求BD的长,而DC=BD+BC=BD+20,设BD为x,用AD的长度作为相等关系,列方程即可求出BD.
解答:解:能求出小山的高.
设小山的高BD为xm,
在Rt△ABD中,=tan∠BAD=tan60°,AD=
同理,在Rt△ACD中得AD=

解得:
答:小山的高BD约为67.4m.
点评:主要考查了从实际问题中抽象出几何图形的能力,把实际问题转化为数学问题来解决,本题主要运用了解直角三角形中的三角函数,所以要掌握一个角所对应正弦,余弦,正切值的表示方法,并会用三角函数值求边长.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网某数学兴趣小组在学习了《锐角三角函数》以后,开展测量物体高度的实践活动,他们在河边的一点A测得河对岸小山顶上一座铁塔的塔顶C的仰角为66°、塔底B的仰角为60°,已知铁塔的高度BC为20m(如图),你能根据以上数据求出小山的高BD吗?若不能,请说明理由;若能,请求出小山的高BD.(精确到0.1m)(参考数据:sin66°≈0.9135,cos66°≈0.4067,tan66°≈2.2460)

查看答案和解析>>

科目:初中数学 来源:第21章《解直角三角形》中考题集(35):21.5 应用举例(解析版) 题型:解答题

某数学兴趣小组在学习了《锐角三角函数》以后,开展测量物体高度的实践活动,他们在河边的一点A测得河对岸小山顶上一座铁塔的塔顶C的仰角为66°、塔底B的仰角为60°,已知铁塔的高度BC为20m(如图),你能根据以上数据求出小山的高BD吗?若不能,请说明理由;若能,请求出小山的高BD.(精确到0.1m)

查看答案和解析>>

科目:初中数学 来源:第4章《锐角三角形》中考题集(34):4.3 解直角三角形及其应用(解析版) 题型:解答题

某数学兴趣小组在学习了《锐角三角函数》以后,开展测量物体高度的实践活动,他们在河边的一点A测得河对岸小山顶上一座铁塔的塔顶C的仰角为66°、塔底B的仰角为60°,已知铁塔的高度BC为20m(如图),你能根据以上数据求出小山的高BD吗?若不能,请说明理由;若能,请求出小山的高BD.(精确到0.1m)

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《锐角三角函数》(07)(解析版) 题型:解答题

(2007•十堰)某数学兴趣小组在学习了《锐角三角函数》以后,开展测量物体高度的实践活动,他们在河边的一点A测得河对岸小山顶上一座铁塔的塔顶C的仰角为66°、塔底B的仰角为60°,已知铁塔的高度BC为20m(如图),你能根据以上数据求出小山的高BD吗?若不能,请说明理由;若能,请求出小山的高BD.(精确到0.1m)

查看答案和解析>>

同步练习册答案