分析 圆的半径为12,求出AB的长度,用弧长公式可求得弧BC的长度,圆锥的底面圆的半径=圆锥的弧长÷2π.
解答 解:AB=$\frac{BC}{\sqrt{2}}$=$\frac{24}{\sqrt{2}}$=12$\sqrt{2}$cm,
∴$\widehat{BC}$=$\frac{90π×12\sqrt{2}}{180}$=6$\sqrt{2}$π
∴圆锥的底面圆的半径=6$\sqrt{2}$π÷(2π)=3$\sqrt{2}$cm.
故答案为:3$\sqrt{2}$.
点评 本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com