精英家教网 > 初中数学 > 题目详情

如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.
(1)求证:CD为⊙O的切线;
(2)若CD=4,⊙O的半径为3,求BD的值.

(1)证明:连接OC,
∵OB=OC,
∴∠OBC=∠OCB,
∵AB是直径,
∴∠ACB=90°,
∴∠A+∠ABC=90°,
又∵∠BCD=∠A,
∴∠OCB+∠BCD=90°,
∴∠OCD=90°,即OC⊥CD
又∵点C在⊙O上,
∴CD是⊙O的切线.

(2)解:∵∠BCD=∠A,∠D=∠D,
∴△BCD∽△CAD,
,即CD2=AD•BD
又∵CD=4,AO=OB=3,
∴16=(BD+6)BD,
解得:BD=2.
分析:(1)连接OC,根据等腰三角形的性质求出∠OCB=∠OBC,根据AB是直径得出∠ABC=90°,求出∠A+∠ABC=90°,代入求出∠OCB+∠BCD=90°,根据切线的判定推出即可;
(2)证△DCB∽△DAC,得出CD2=BD×DA,代入即可求出BD.
点评:本题考查了切线的判定,圆周角定理,相似三角形的性质和判定,等腰三角形的性质等知识点,主要考查学生综合运用性质进行推理的能力,题目比较典型,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点C在以AB为直径的⊙O上,CD⊥AB于P,设AP=a,PB=b.
(1)求弦CD的长;
(2)如果a+b=10,求ab的最大值,并求出此时a,b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点C在以AB为直径的半圆弧上,∠ABC=30°,沿直线CB将半圆折叠,直径AB和弧BC交于点D,已知AB=6,则图中阴影部分的面积和周长分别等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.
(1)求证:CD为⊙O的切线;
(2)过点C作CE⊥AB于E,若CE=2,cosD=
45
,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知:如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.
(1)求证:CD为⊙O的切线;
(2)过点C作CE⊥AB于E.若CE=2,cosD=
45
,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•洛阳一模)已知:如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,CD为⊙O的切线,∠D=32°,则∠A的度数为
29°
29°

查看答案和解析>>

同步练习册答案