精英家教网 > 初中数学 > 题目详情

【题目】ABCABD中,∠DBA=∠CABACBD交于点F

1)如图1,若∠DAF∠CBF,求证:ADBC

2)如图2∠D135°∠C45°AD2AC4,求BD的长.

3)如图3,若∠DBA18°∠D108°∠C72°AD1,直接写出DB的长.

【答案】1)证明见讲解;(2;(3

【解析】

1)证明,即可得出

2)在上取一点,使得,由(1)知,,得出,证出,得出,进而得出答案;

3)在上取一点,使得,由(1)知,得出,证出,证明,得出,求出的长,进而得出答案.

1)证明:

中,

2)解:在上取一点,使得,如图2所示:

由(1)知,

3)解:在上取一点,使得,如图3所示:

由(1)知

,即

解得:(负值已舍去),

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两个草莓采摘园为吸引顾客,在草莓销售价格相同的基础上分别推出优惠方案,甲园:顾客进园需购买门票,采摘的草莓按六折优惠.乙园:顾客进园免门票,采摘草莓超过一定数量后,超过的部分打折销售.活动期间,某顾客的草莓采摘量为x kg,若在甲园采摘需总费用y1元,若在乙园采摘需总费用y2元, y1y2x之间的函数图象如图所示,则下列说法中错误的是(

A.甲园的门票费用是60

B.草莓优惠前的销售价格是40/kg

C.乙园超过5 kg后,超过的部分价格优惠是打五折

D.若顾客采摘12 kg草莓,那么到甲园或乙园的总费用相同

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,平行四边形ABCD中,ABACAB3AD5,点P在边AD上运动,以P为圆心,PA为半径的⊙P与对角线AC交于AE两点.

1)如图2,当⊙P与边CD相切于点F时,求AP的长;

2)不难发现,当⊙P与边CD相切时,⊙P与平行四边形ABCD的边有三个公共点,随着AP的变化,⊙P与平行四边形ABCD的边的公共点的个数也在变化,若公共点的个数为4,直接写出相对应的AP的值的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的平分线过点,以点为圆心的圆与相切于点的直径.

1)求证:的切线;

2)若,求

3)若的半径为,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,过点AAHBC,分别交BDBC于点EHFED的中点,∠BAF120°,则∠C的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,线段AB经过⊙O的圆心O,交⊙OAC两点,BC1AD为⊙O的弦,连结BD,∠BAD=∠ABD30°

1)求证:直线BD是⊙O的切线;

2)求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是每个大于2的偶数都表示为两个素数的和,如10=3+7

1)从71113174个素数中随机抽取一个,则抽到的数是11的概率是_____

2)从71113174个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,用画树状图或列表的方法,求抽到的两个素数之和等于24的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(-1.50)B(02),将△ABO顺着x轴的正半轴无滑动的滚动,第一次滚动到①的位置,点B的对应点记作B1;第二次滚动到②的位置,点B1的对应点记作B2;第三次滚动到③的位置,点B2的对应点记作B3;依次进行下去,则点B2020的坐标为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的图象与轴交于两点,与轴交于点,点在直线上,横坐标为

1)确定二次函数的解析式;

2)如图1时,交二次函数的图象于点的面积记作为何值时的值最大,并求出的最大值;

3)如图2,过点轴的平行线交二次函数的图象于点与点关于直线对称是否存在点使四边形为菱形,若存在直接写出的值;若不存在请说明理由.

查看答案和解析>>

同步练习册答案