【题目】已知点A(2,﹣3)在双曲线y=上,则下列哪个点也在此双曲线上( )
A. (1,6) B. (﹣1,6) C. (2,3) D. (﹣2,﹣3)
科目:初中数学 来源: 题型:
【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:
时间(第x天) | 1 | 3 | 6 | 10 | … |
日销售量(m件) | 198 | 194 | 188 | 180 | … |
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
时间(第x天) | 1≤x<50 | 50≤x≤90 |
销售价格(元/件) | x+60 | 100 |
(1)求m关于x的一次函数表达式;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格-每件成本)】
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=ax2+bx+3的图像经过点A(1,0),B(-2,3).
(1)求该二次函数的表达式;
(2)求该二次函数的最大值;
(3)结合图像,解答问题:当y>3时,x的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线C1:y=ax2+bx+1的顶点坐标为D(1,0)且经过点(0,1),将抛物线C1向右平移1个单位,向下平移1个单位得到抛物线C2,直线y=x+c,经过点D交y轴于点A,交抛物线C2于点B,抛物线C2的顶点为P.
(1)求抛物线C1的解析式;
(2)如图2,连结AP,过点B作BC⊥AP交AP的延长线于C,设点Q为抛物线上点P至点B之间的一动点,连结BQ并延长交AC于点F,
①当点Q运动到什么位置时,S△PBD×S△BCF=8?
②连接PQ并延长交BC于点E,试证明:FC(AC+EC)为定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l的函数表达式为,点的坐标为,以为圆心,为半径画圆,交直线l于点,交x轴正半轴于点,以为圆心,为半径画圆,交直线l于点,交x轴正半轴于点,以为圆心,为半径画圆,交直线l于点,交x轴正半轴于点;按此做法进行下去,其中的长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y,的对应值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | -4 | -4 | 0 | 8 | … |
(1)根据上表填空:
①抛物线与x轴的交点坐标是_________和_________;
②抛物线经过点(-3,_________);
(2)试确定抛物线y=ax2+bx+c的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是( )
A. π B. C. 2 D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)
(1)若商店计划销售完这批商品后能获利1 100元,请问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并指出获利最大的购货方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△AMN为等腰三角形,点O是底边MN的中点,腰AN与⊙O相切于点E,ON与⊙O相交于点D.
(1)求证:AM与⊙O相切;
(2)若EN=,DN=2.求阴影部分的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com