精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣8,0),B(0,﹣6)两点.

(1)求出直线AB的函数解析式;
(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;
(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得SPDE= SABC?若存在,请求出点P的坐标;若不存在,请说明理由.

【答案】
(1)解:设直线AB的函数解析式为y=kx+b,

把A(﹣8,0),B(0,﹣6)代入得 ,解得

所以直线AB的解析式为y=﹣ x﹣6


(2)解:在Rt△AOB中,AB= =10,

∵∠AOB=90°,

∴AB为⊙M的直径,

∴点M为AB的中点,M(﹣4,﹣3),

∵MC∥y轴,MC=5,

∴C(﹣4,2),

设抛物线的解析式为y=a(x+4)2+2,

把B(0,﹣6)代入得16a+2=﹣6,解得a=﹣

∴抛物线的解析式为y=﹣ (x+4)2+2,即y=﹣ x2﹣4x﹣6


(3)解:存在.

当y=0时,﹣ (x+4)2+2=0,解得x1=﹣2,x2=﹣4,

∴D(﹣6,0),E(﹣2,0),

SABC=SACM+SBCM= 8CM=20,

设P(t,﹣ t2﹣4t﹣6),

∵SPDE= SABC

(﹣2+6)|﹣ t2﹣4t﹣6|= 20,

即|﹣ t2﹣4t﹣6|=1,

当﹣ t2﹣4t﹣6=1,解得t1=﹣4+ ,t2=﹣4﹣ ,此时P点坐标为(﹣4+ ,1)或(﹣4﹣ ,0)

当﹣ t2﹣4t﹣6=﹣1,解得t1=﹣4+,t2=﹣4﹣ ;此时P点坐标为(﹣4+ ,﹣1)或(﹣4﹣ ,0)

综上所述,P点坐标为(﹣4+ ,1)或(﹣4﹣ ,0)或(﹣4+ ,﹣1)或(﹣4﹣ ,0)时,使得SPDE= SABC


【解析】(1)利用待定系数法可求出直线AB的解析式;(2)先利用勾股定理计算出AB=10,再根据圆周角定理得到AB为⊙M的直径,则点M为AB的中点,M(﹣4,﹣3),则可确定C(﹣4,2),然后利用顶点式求出抛物线解析式;(3)通过解方程﹣ (x+4)2+2=0得到D(﹣6,0),E(﹣2,0),利用SABC=SACM+SBCM , 可求出SABC=10,设P(t,﹣ t2﹣4t﹣6),所以 (﹣2+6)|﹣ t2﹣4t﹣6|= 20,然后解绝对值方程求出t即可得到P点坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC和△DCE都是直角三角形,其中一个三角形是由另一个三角形旋转得到的,下列叙述中错误的是(
A.旋转中心是点C
B.顺时针旋转角是90°
C.旋转中心是点B,旋转角是∠ABC
D.既可以是逆时针旋转又可以是顺时针旋转

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中,正确的是(

A. 为了了解东北地区初中生每天体育锻炼的时间,应采用普查的方式

B. 平均数相同的甲、乙两组数据,若甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定

C. 掷一枚质地均匀的硬币次,必有次正面朝上

D. 数据的中位数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,要建一个长方形养鸡场,鸡场的一边靠墙(墙足够长),如果用50m长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长度为x(篱笆墙的厚度忽略不计).

(1)要使鸡场面积最大,鸡场的长度应为多少米?
(2)如果中间有n(n是大于1的整数)道篱笆墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,要使鸡场面积最大,鸡场长度与中间隔离墙的道数有怎样的关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C是以点O为圆心,AB为直径的半圆上的动点(点C不与点A,B重合),AB=4.设弦AC的长为x,△ABC的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC,AB=AC,∠DBC=15°,AB的垂直平分线MNAC于点D,则∠A=____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)36﹣76+(﹣23)﹣(﹣10)

(2)﹣6﹣9

(3)(﹣1)﹣(+6)﹣2.25+

(4)11+(﹣35)﹣(﹣41)+(﹣16)

(5)(﹣3)﹣(﹣2)﹣(﹣1)﹣(+1.75)

(6)(﹣4)﹣(﹣5)+(﹣4)﹣(+3).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是( )

A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案