【题目】如图,已知线段, 是上的一动点,是的中点,以为边作正方形,点关于射线的对称点为 ,连接、,直线交于点.
(1)如图1,当点在线段上,且,求的度数;
(2)小明在解题时发现:当点在线段上时,线段,,之间满足,那么你认为当点在线段上时(如图2),他的结论是否还成立?若成立,请证明,若不成立,请说明理由;
(3)如图3,点在上,且,当点从点运动到点时,直接写出点所经过的路径长.
【答案】(1)∠AFD=45 ;(2)成立,理由见解析;(3)点所经过的路径长为.
【解析】
(1)根据点关于射线的对称点为,得出AE=AB,∠EAP=∠PAB=25,再根据正方形和等腰三角形的性质得出∠AED,然后根据三角形的外角即可得出结论
(2)连接BF、BD,先根据正方形的性质可得BD=2AD,再根据三角形的外角和内角和定理得出∠AFD=45,从确定BFD 是直角三角形,即可得出结论
(3)当点P运动到点Q时,BP=2,解直角三角形△ABP,得出∠BAP=30,再根据∠AFD=∠AOD,可得点F所经过的路径长为以点O为圆心,以OA长为半径,圆心角∠AOF=150的弧长,即可求出答案
(1)证明:∵四边形ABCD是正方形
∴AB=AD,∠BAD=90
∵点B与点E关于射线AP对称
∴AE=AB,∠EAP=∠PAB=25
∴AE=AD,∠EAD=∠EAB+∠BAD=140
∴∠AED=(180-∠EAD)= (180-140)=20
∴∠AFD=∠AED+∠EAP=20+25=45
(2)成立
理由如下:连接BF、BD,
在RtABD中,BD=AB+AD=2AD
∵点B与点E关于射线AP对称
∴BF=EF ,AB=AE=AD,∠AFB=∠AFD
∴∠BAF=∠EAF,∠ADE=∠AED
∵∠AED是△AEF的外角
∴∠AED=∠EAF+∠AFD
又∵∠DAE=90-2∠EAF
∴在△ADE中,∠DAE+∠ADE+∠AED=180
∴90-2∠EAF+2(∠EAF+∠AFD)=180
∴∠AFD=45
∴∠BFD=2∠AFD=90
∴在RtBFD中,B F+DF=BD
∴EF+DF=2AD
(3)点所经过的路径长为.
设AC、BD相交于点O,则
OA=AB=
∵在点F的运动过程中,∠AFD=45
∴∠AFD=∠AOD
当点P运动到点Q时,BP=2
在Rt△ABP中,tan∠BAP=
∴∠BAP=30∴∠CAF=15
∴点F所经过的路径长为以点O为圆心,以OA
∴点F所经过的路径长为.
科目:初中数学 来源: 题型:
【题目】成都市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种新产品的成本为30元/件,经市场调查发现,该产品的年销售量y(万件)与销售单价x(元)之间的函数关系如下图:
(1)求出y与x之间的函数关系式;
(2)当该产品的售价为多少时,该企业销售该产品获得的年利润最大?最大年利润是多少?(注:年利润=年销售量×(销售单价﹣成本单价))
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价元件与每天销售量件之间满足如图所示的关系.
求出y与x之间的函数关系式;
写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《海岛算经》第一个问题的大意是:如图,要测量海岛上一座山峰的高度,立两根高丈的标杆和,两竿之间的距步,成一线,从处退行步到,人的眼睛贴着地面观察点,三点成一线;从处退行步到,从观察点,三点也成一-线.试计算山峰的高度及的长. (这里步尺,丈尺,结果用丈表示) .怎样利用相似三角形求得线段及的长呢?请你试一试!
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.
(1)如图1,在的正方形网格中,有一个网格和两个网格四边形与,其中是被分割成的“友好四边形”的是 ;
(2)如图2,将绕点逆时针旋转得到,点落在边,过点作交的延长线于点,求证:四边形是“友好四边形”;
(3)如图3,在中,,,的面积为,点是的平分线上一点,连接,.若四边形是被分割成的“友好四边形”,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R .对于一个点与等边三角形,给出如下定义:满足r≤d≤R的点叫做等边三角形的中心关联点.在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣,﹣1),C(,﹣1).
(1)已知点D(2,2),E(,1),F(,﹣1).在D,E,F中,是等边△ABC的中心关联点的是 ;
(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°.
①若线段AM上存在等边△ABC的中心关联点P(m,n),求m的取值范围;
②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b上总存在等边△ABC的中心关联点;(直接写出答案,不需过程)
(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为.当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某游乐场试营业期间,每天运营成本为1000元.经统计发现,每天售出的门票张数(张)与门票售价(元/张)之间满足一次函数,设游乐场每天的利润为(元).(利润=票房收入-运营成本)
(1)试求与之间的函数表达式.
(2)游乐场将门票售价定为多少元/张时,每天获利最大?最大利润是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com