精英家教网 > 初中数学 > 题目详情
定义:a是不为1的有理数,我们把
1
1-a
称为a的衍生数.如:2的衍生数是
1
1-2
=-1
,-1的衍生数是
1
1-(-1)
=
1
2
.已知a1=-
1
3
,a2是a1的衍生数,a3是a2的衍生数,a4是a3的衍生数,…,依此类推,则a2012=
3
4
3
4
分析:已知 a1=-
1
3
,首先根据衍生数的定义,依次计算出a2、a3、a4、a5,发现每3个数为一个循环,然后用2012除以3,即可得出答案.
解答:解:已知a1=-
1
3

a1的衍生数a2=
1
1-(-
1
3
)
=
3
4

a2的衍生数a3=
1
1-
3
4
=4,
a3的衍生数a4=
1
1-4
=-
1
3

a4的衍生数a5=
1
1-(-
1
3
)
=
3
4

三个数为一个循环,
2012÷3=670…2,
所以a2012=
3
4

故答案为:
3
4
点评:此题考查了学生对数字变化类的理解和掌握,解答此题的关键是正确理解衍生数的定义,依次计算出a2、a3、a4、a5的值,从而找出数字变化的规律.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-单项式乘以多项式(带解析) 题型:解答题

对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中数学 来源:2013年初中数学单元提优测试卷-单项式乘以多项式(解析版) 题型:解答题

对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.

查看答案和解析>>

同步练习册答案