精英家教网 > 初中数学 > 题目详情

我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.
(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);
(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):
①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是______;
②如图4,当四边形ABCD没有等高点时,你得到的一个结论是______.

解:(1)比如:

(2)①S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4等.
②∵分别作△ABD与△BCD的高,h1,h2
==
∴S1×S3=S2×S4等.
分析:(1)在BD上任选一点E(不与B、D重合),连接AE、CE即可;
(2)根据等底等高,可得结论:①S1+S4=S2+S3,S1+S3=S2+S4或S1×S3=S2×S4等.
②S1×S3=S2×S4等.
点评:此题主要考查学生的阅读理解能力和对等底等高知识的灵活应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们给出如下定义:如图①,平面内两条直线l1、l2相交于点O,对于平面内的任意一点M,若p、q分别是点M到直线l1和l2的距离(P≥0,q≥0),称有序非负实数对[p,q]是点M的距离坐标.
根据上述定义,请解答下列问题:
如图②,平面直角坐标系xoy内,直线l1的关系式为y=x,直线l2的关系式为y=
1
2
x
,M是平面直角坐标系内的点.
(1)若p=q=0,求距离坐标为[0,0]时,点M的坐标;
(2)若q=0,且p+q=m(m>0),利用图②,在第一象限内,求距离坐标为[p,q]时,点M的坐标;
(3)若p=1,q=
1
2
,则坐标平面内距离坐标为[p,q]时,点M可以有几个位置?并用三角尺在图③画出符合条件的点M(简要说明画法).
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

25、我们给出如下定义:如图2所示,若一个四边形的两组相邻两边分别相等,则称这个四边形为筝形四边形,把这两条相等的邻边称为这个四边形的筝边.
(1)写出一个你所学过的特殊四边形中是筝形四边形的图形的名称
矩形

(2)如图1,已知格点(小正方形的顶点)O(0,0),A(0,3),B(3,0),请你画出以格点为顶点,OA,OB为边的筝形四边OAMB;
(3)如图2,在筝形ABCD,AD=CD,AB=BC,若∠ADC=60°,∠ABC=30°,求证:2AB2=BD2

查看答案和解析>>

科目:初中数学 来源:2007年北京市西城区中考数学二模试卷(解析版) 题型:解答题

我们给出如下定义:如图①,平面内两条直线l1、l2相交于点O,对于平面内的任意一点M,若p、q分别是点M到直线l1和l2的距离(P≥0,q≥0),称有序非负实数对[p,q]是点M的距离坐标.
根据上述定义,请解答下列问题:
如图②,平面直角坐标系xoy内,直线l1的关系式为y=x,直线l2的关系式为,M是平面直角坐标系内的点.
(1)若p=q=0,求距离坐标为[0,0]时,点M的坐标;
(2)若q=0,且p+q=m(m>0),利用图②,在第一象限内,求距离坐标为[p,q]时,点M的坐标;
(3)若,则坐标平面内距离坐标为[p,q]时,点M可以有几个位置?并用三角尺在图③画出符合条件的点M(简要说明画法).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

我们给出如下定义:如图2所示,若一个四边形的两组相邻两边分别相等,则称这个四边形为筝形四边形,把这两条相等的邻边称为这个四边形的筝边.
(1)写出一个你所学过的特殊四边形中是筝形四边形的图形的名称________;
(2)如图1,已知格点(小正方形的顶点)O(0,0),A(0,3),B(3,0),请你画出以格点为顶点,OA,OB为边的筝形四边OAMB;
(3)如图2,在筝形ABCD,AD=CD,AB=BC,若∠ADC=60°,∠ABC=30°,求证:2AB2=BD2

查看答案和解析>>

科目:初中数学 来源:延庆县一模 题型:解答题

我们给出如下定义:如图2所示,若一个四边形的两组相邻两边分别相等,则称这个四边形为筝形四边形,把这两条相等的邻边称为这个四边形的筝边.
(1)写出一个你所学过的特殊四边形中是筝形四边形的图形的名称______;
(2)如图1,已知格点(小正方形的顶点)O(0,0),A(0,3),B(3,0),请你画出以格点为顶点,OA,OB为边的筝形四边OAMB;
(3)如图2,在筝形ABCD,AD=CD,AB=BC,若∠ADC=60°,∠ABC=30°,求证:2AB2=BD2
精英家教网

查看答案和解析>>

同步练习册答案