精英家教网 > 初中数学 > 题目详情

如图,C在线段AB上,AB=3AC,分别以AC、BC为边在线段AB的同侧作两个正三角形△ACD与△BCE,若AC=6,则DE的长度是


  1. A.
    6数学公式
  2. B.
    9
  3. C.
    6数学公式
  4. D.
    3数学公式
C
分析:分别过D、E作DM⊥AB,EN⊥AB,再过D作DF⊥EN构造出直角三角形,根据图形特点,不难求出DF、EF的长,再利用勾股定理即可求出.
解答:分别过点D,E作AB的垂线段DM,EN,垂足为M,N,过点D作DF⊥EN垂足为F,则四边形DMNF为矩形,△DEF为直角三角形.
∵AC=6,
∴AB=18,
∴BC=12,
∵△ACD与△BCE是等边三角形,
∴MC=3,CN=6,
∵DF=MN=9,DM=3,EN=6
∴EF=EN-FN=EN-DM=6-3=3
∴DE2=DF2+EF2,即DE2=92+(32=108
∴DE==6
故选C.
点评:解题关键是构造直角三角形,利用勾股定理求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.
(1)若a=4 cm,b=6 cm,求线段MN的长;
(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;
(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图点P在线段AB上,⊙P与x轴相切于D点,且与线段AO相切于C点,已知A、B两点的坐标分别是(8,6),(5,0),
求:圆心P的坐标和⊙P的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图点C在线段AB上,AC=2BC,M、N分别为AC、BC的中点,若BC=4cm,求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,线段AB=30cm,点O在AB线段上,M、N两点分别从A、O同时出发,以2cm/s,1cm/s的速度沿AB方向向右运动.
(1)如图1,若点M、点N同时到达B点,求点O在线段AB上的位置.
(2)如图2,在线段AB上是否存在点O,使M、N运动到任意时刻,(点M始终在线段AO上,点N始终在线段OB上),总有MO=2BN?若存在,求出点O在线段AB上的位置;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,C在线段AB上,在AB的同侧作等边三角形△ACM和△BCN,连接AN,BM,若∠MBN=38°,则∠ANB=
82°
82°

查看答案和解析>>

同步练习册答案