精英家教网 > 初中数学 > 题目详情
如图,在某小区的休闲广场有一个正方形花园ABCD,为了便于观赏,要在AD、BC之间修一条小路,在AB、DC之间修另一条小路,使这两条小路等长.设计师给出了以下几种设计方案:
①如图1,E是AD上一点,过A作BE的垂线,交BE于点O,交CD于点H,则线段AH、BE为等长的小路;

②如图2,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,则线段GH、BE为等长的小路;

③如图3,过正方形ABCD内任意一点O作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,则线段GH、EF为等长的小路;

根据以上设计方案,解答下列问题:
(1)你认为以上三种设计方案都符合要求吗?
(2)要根据图1完成证明,需要证明△   ≌△   ,进而得到线段  =  
(3)如图4,在正方形ABCD外面已经有一条夹在直线AD、BC之间长为EF的小路,想在直线AB、DC之间修一条和EF等长的小路,并且使这条小路的延长线过EF上的点O,请画草图(加以论述),并给出详细的证明.
(1)符合要求
(2)ABE   DAH   BE   AH
(3)见解析

试题分析:(1)通过证明三角形全等,由全等三角形的对应边相等可以判断以上三种设计方案都符合要求;
(2)在图1中,先由正方形的性质得出∠BAE=∠ADH=90°,AB=AD,根据同角的余角相等得出∠ABE=∠DAH,再利用ASA证明△ABE≌△DAH,进而由全等三角形的对应边相等即可得出BE=AH;
(3)先过点O作EF的垂线,分别交AB、DC的延长线于点G、H,则线段GH、EF为等长的小路.再进行证明:过点H作HN⊥AB交AB的延长线于点P,过点E作EP⊥BC交BC的延长线于点P,利用AAS证明△GHN≌△FEP,即可得出GH=EF.
解:(1)以上三种设计方案都符合要求;
(2)如图1,∵四边形ABCD是正方形,
∴∠BAE=∠ADH=90°,AB=AD,
又∵BE⊥AH,
∴∠ABE=∠DAH=90°﹣∠BAH.
在△ABE与△DAH中,

∴△ABE≌△DAH(ASA),
∴BE=AH;
(3)如图,过点O作EF的垂线,分别交AB、DC的延长线于点G、H,则线段GH为所求小路.理由如下:
过点H作HN⊥AG于N,过点E作EP⊥BC交BC的延长线于点P,则∠GNH=∠FPE=90°.
∵AB∥CD,HN⊥AB,CB⊥AB,
∴NH=BC,
同理,EP=DC.
∵BC=DC,∴NH=EP.
∵GO⊥EF,∴∠MFO+∠FMO=90°,
∵∠BGM+∠GMB=90°,∠FMO=∠GMB,
∴∠BGM=∠MFO.
在△GHN与△FEP中,

∴△GHN≌△FEP(AAS),
∴GH=EF.
故答案为:ABE,DAH,BE,AH.

点评:本题考查了数学知识在实际生活中的应用,其中涉及到正方形的性质,余角的性质,全等三角形的判定与性质,难度不大.体现了数学知识来源于生活,并且为生活服务,能够激发同学们学习数学的热情.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为    cm.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG="CE" ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是

A.4个         B.3个        C.2个        D.1个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是
A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在各个内角都相等的多边形中,一个外角等于一个内角的,求这个多边形每一个内角的度数和它的边数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图△ABC中,BC=10,AC=17,CD=8,BD=6.
求:(1)AD的长,(2)△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,∠C=90°,BC=60cm,CA=80cm,一只蜗牛从C点出发,以每分20cm的速度沿CA﹣AB﹣BC的路径再回到C点,需要    分的时间.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图,ΔABC中,∠ABC=50°,∠ACB=70°,D为边BC上一点(D与B、C不重合),连接AD,∠ADB的平分线所在直线分别交直线AB、AC于点E、F. 求证:2∠AED-∠CAD=170°;

(2)若∠ABC=∠ACB=n°,且D为射线CB上一点,(1)中其他条件不变,请直接写出∠AED与∠CAD的数量关系.(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.

(1)如图1,当CB与CE在同一直线上时,求证:MB∥CF;
(2)如图1,若CB=a,CE=2a,求BM,ME的长;
(3)如图2,当∠BCE=45°时,求证:BM=ME.

查看答案和解析>>

同步练习册答案