精英家教网 > 初中数学 > 题目详情
11.【操作发现】
(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
①求∠EAF的度数;
②DE与EF相等吗?请说明理由;
【类比探究】
(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:
①∠EAF的度数;
②线段AE,ED,DB之间的数量关系.

分析 (1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;
(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;
②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.

解答 解:(1)①∵△ABC是等边三角形,
∴AC=BC,∠BAC=∠B=60°,
∵∠DCF=60°,
∴∠ACF=∠BCD,
在△ACF和△BCD中,$\left\{\begin{array}{l}{AC=BC}&{\;}\\{∠ACF=∠BCD}&{\;}\\{CF=CD}&{\;}\end{array}\right.$,
∴△ACF≌△BCD(SAS),
∴∠CAF=∠B=60°,
∴∠EAF=∠BAC+∠CAF=120°;
②DE=EF;理由如下:
∵∠DCF=60°,∠DCE=30°,
∴∠FCE=60°-30°=30°,
∴∠DCE=∠FCE,
在△DCE和△FCE中,$\left\{\begin{array}{l}{CD=CF}&{\;}\\{∠DCE=∠FCE}&{\;}\\{CE=CE}&{\;}\end{array}\right.$,
∴△DCE≌△FCE(SAS),
∴DE=EF;
(2)①∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=BC,∠BAC=∠B=45°,
∵∠DCF=90°,
∴∠ACF=∠BCD,
在△ACF和△BCD中,$\left\{\begin{array}{l}{AC=BC}&{\;}\\{∠ACF=∠BCD}&{\;}\\{CF=CD}&{\;}\end{array}\right.$,
∴△ACF≌△BCD(SAS),
∴∠CAF=∠B=45°,AF=DB,
∴∠EAF=∠BAC+∠CAF=90°;
②AE2+DB2=DE2,理由如下:
∵∠DCF=90°,∠DCE=45°,
∴∠FCE=90°-45°=45°,
∴∠DCE=∠FCE,
在△DCE和△FCE中,$\left\{\begin{array}{l}{CD=CF}&{\;}\\{∠DCE=∠FCE}&{\;}\\{CE=CE}&{\;}\end{array}\right.$,
∴△DCE≌△FCE(SAS),
∴DE=EF,
在Rt△AEF中,AE2+AF2=EF2
又∵AF=DB,
∴AE2+DB2=DE2

点评 本题是几何变换综合题目,考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.某快递公司的快件付费主要根据快件的质量按以下资费标准进行计算,即某地快件付费=该地首重+续重(快件质量-1kg)×该地续重资费.
 快件到达地 首重现付资费(1kg) 续重现付资费(每kg)
 江西 10 2
 浙江、上海、广东等 12 4
 北京、天津、山东等 15 6
(1)某同学寄物品给外地务工的父亲共付费用58元,且物品快件质量在10kg以上,20kg以下,请问该同学寄往何处?物品快件的质量是多少?请利用方程解决问题;
(2)如果他要寄特产给在北京的哥哥,且费用控制在40元以内,那么他最多可寄特产快件多少干克(结果取整数)?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.甲、乙两个小组各6名学生的英语口试测验成绩如下(单位:分).甲组:76,90,88,82,85,83.乙组:81,90,91,89,79,74
(1)求两组学生成绩的平均数.
(2)请你利用统计知识,说明哪个小组学生的成绩比较稳定.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=$\sqrt{10}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,在△ABC中,∠C=90°,AB=10cm,BC=6cm,两只小虫(不计大小)分别从C点出发,小虫1沿CA-AB-BC运动,速度大小为2cm/s,小虫2沿CB-BA-AC运动,速度大小为$\frac{3}{2}$cm/s,相遇后停止.这一过程中两小虫之间的距离y与时间t的关系的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,已知抛物线y=ax2+bx+c过点A(-1,0),B(3,0),C(0,3),点M、N为抛物线上的动点,过点M作MD∥y轴,交直线BC于点D,交x轴于点E.
(1)求二次函数y=ax2+bx+c的表达式;
(2)过点N作NF⊥x轴,垂足为点F,若四边形MNFE为正方形(此处限定点M在对称轴的右侧),求该正方形的面积;
(3)若∠DMN=90°,MD=MN,求点M的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,点A坐标为(2,0),以OA为边在第一象限内作等边△OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边△BCD,连接AD交BC于E.

(1)①直接回答:△OBC与△ABD全等吗?
②试说明:无论点C如何移动,AD始终与OB平行;
(2)当点C运动到使AC2=AE•AD时,如图2,经过O、B、C三点的抛物线为y1.试问:y1上是否存在动点P,使△BEP为直角三角形且BE为直角边?若存在,求出点P坐标;若不存在,说明理由;
(3)在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数y=$\sqrt{3}$x+$\sqrt{3}$m的图象l与M有公共点.试写出:l与M的公共点为3个时,m的取值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.甲、乙两名同学进行跳高测试,每人10次跳高的平均成绩恰好是1.6米,方差分别是S2=1.2,S2=0.5,则在本次测试中,乙同学的成绩更稳定(填“甲”或“乙”)

查看答案和解析>>

同步练习册答案