【题目】如图,AB是半圆O的直径,半径OC⊥AB于点O,点D是的中点,连接CD、OD.下列四个结论:①ACOD;②CE=OE;③△ODE∽△ADO;④∠ADC=∠BOD.其中正确结论的序号是( )
A.①④B.①②④C.②③D.①②③④
【答案】A
【解析】
如图,利用圆周角定理得∠1=∠3,加上∠1=∠2,则∠2=∠3,于是可对①进行判断;利用AC∥OD可判定△ACE∽△DOE,则,再判定△AOC为等腰直角三角形得到AC=OA=OD,所以CE=OE,于是可对②进行判断;利用圆周角定理得到∠COD=2∠1,则根据相似三角形的判定方法可对③进行判断;利用圆周角定理可计算出∠ADC=45°,而∠BOD=45°,则可对④进行判断.
解:如图,
∵点D是的中点,
即,
∴∠1=∠3,
∵OA=OD,
∴∠1=∠2,
∴∠2=∠3,
∴AC∥OD,所以①正确;
∴△ACE∽△DOE,
∴,
∵OC⊥OA,
∴△AOC为等腰直角三角形,
∴AC=OA=OD,
∴
∴CE=OE,所以②错误;
∵点D是的中点,
∴∠BOD=∠COD
∵∠BOD=2∠1
∴∠COD=2∠1,
而∠ODE=∠ADO,
∴△ODE与△ADE不相似,所以③错误;
∵∠ADC=∠AOC=45°,∠BOD=∠BOC=45°,
∴∠ADC=∠BOD,所以④正确.
∴正确的结论是①④,
故选:A.
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
在数学课上,老师提出如下问题:
如图,已知,,用尺规作图的方法在上取一点,使得.
作法:
(1)作线段的垂直平分线.
(2)直线交于点.
则点就是所求的点.
证明:连接
直线垂直平分线段
(填写正确的依据)
.
解决下列问题:
(1)利用尺规作图确定 点的位置;
(2)补全证明过程中的依据;
(3)如果题干无条件,在线段上点不一定存在,在请画图说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】ABC为等边三角形,以AB边为腰作等腰RtABD,∠BAD=90,AC与BD交于点E,连接CD,过点D作DF⊥BC交BC延长线于点F.
(1)如图1,若DF=1,AB= ;AE= ;
(2)如图2,将CDF绕点D顺时针旋转至△C1DF1的位置,点C,F的对应点分别为C1,F1,当DC1平分∠EDC时,DC1与AC交于点M,在AM上取点N,使AN=DM,连接DN,求tan∠NDM的值.
(3)如图3,将CDF绕点D顺时针旋转至C1DF1的位置,点C,F的对应点分别为C1,F1,连接AF1、BC1,点G是BC1的中点,连接AG.求的值;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图像与轴正半轴交于点,平行于轴的直线与该抛物线交于、两点(点位于点左侧),与抛物线对称轴交于点.
(1)求的值;
(2)设、是轴上的点(点位于点左侧),四边形为平行四边形.过点、分别作轴的垂线,与抛物线交于点、.若,求、的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市要开展“不忘初心,牢记使命”主题演讲比,某中学将参加本校选拔赛的50名选手的成绩(满分为100分,得分为正整数)分成五组,并绘制了不完整的统计图表.
分数段 | 频数 | 频率 |
69.5~75.5 | 9 | 0.18 |
75.5~81.5 | m | 0.16 |
81.5~87.5 | 14 | 0.28 |
87.5~93.5 | 16 | n |
93.5~99.5 | 3 | 0.06 |
(1)表中n= ,并在图中补全频数直方图.
(2)甲同学的比赛成绩是50位参赛选手成绩的中位数,据此推测他的成绩落在 分数段内;
(3)选拔赛时,成绩在93.5~99.5的三位选手中,男生2人,女生1人,学校从中随机确定2名选手参加全市决赛,请用列表法或树状图法求恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).
(1)求出抛物线的解析式;
(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,
①存在无数个四边形MNPQ是平行四边形;
②存在无数个四边形MNPQ是矩形;
③存在无数个四边形MNPQ是菱形;
④至少存在一个四边形MNPQ是正方形,
其中正确的结论的个数为( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1,图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.
(1)在图1中画出以AB为底边的等腰直角三角形ABC,点C在小正方形的顶点上;
(2)在图2中画出以AB为腰的等腰三角形ABD,点D在小正方形的顶点上,且△ABD的面积为8.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线与轴交于,两点,与轴交于点.
(1)求抛物线的函数表达式
(2)如图1,点为第四象限抛物线上一点,连接,交于点,连接,记的面积为,的面积为,求的最大值;
(3)如图2,连接,,过点作直线,点,分别为直线和抛物线上的点.试探究:在第一象限是否存在这样的点,,使.若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com