分析 根据DE∥AC,DF∥AB,所以四边形AEDF为平行四边形,所以AE=DF=3cm,DE=AF=5cm,再证明△BED为等边三角形,△DFC为等边三角形,得到E=BD=DE=5cm,DF=FC=CD=3cm,所以AB=AE+BE=8cm,AC=AF+CF=8cm,BC=BD+CD=8cm,即可解答.
解答 解:∵DE∥AC,DF∥AB,
∴四边形AEDF为平行四边形,
∴AE=DF=3cm,DE=AF=5cm,
∵△ABC为等边三角形,
∴∠A=∠B=∠C=60°,
∵DE∥AC,DF∥AB,
∴∠BED=∠A=60°,∠DFC=∠A=60°,
∴∠BED=∠B=60°,∠DFC=∠C=60°,
∴△BED为等边三角形,△DFC为等边三角形,
∴BE=BD=DE=5cm,DF=FC=CD=3cm,
∴AB=AE+BE=8cm,AC=AF+CF=8cm,BC=BD+CD=8cm,
∴△ABC的周长为:AB+AC+BC=8+8+8=24cm.
故答案为:24.
点评 本题考查了等边三角形的性质与判定,解决本题的关键是平行四边形和等边三角形的判定.
科目:初中数学 来源: 题型:选择题
A. | $\frac{6-2x}{-x+3}$=2 | B. | $\frac{a-b}{(a-b)(a+b)}$=0 | C. | $\frac{(a-b)^{3}}{(b-a)^{3}}$=1 | D. | $\frac{(a-b)^{2}}{(b-a)^{2}}$=-1 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com