分析 由A、B、C、D四点共圆,可得∠FAD=∠BCD,由同弧所对的圆周角相等得到圆周角相等,结合外角平分线可得∠BCD=∠CBD,可得BD=CD;过点D作DF⊥BE,可以通过证明三角形全等,通过边的关系可以得到②AC-AB=2AM,③AC+AB=2CM都是正确的;S△ABD和S△ABC的大小无法判断.
解答 解:过点D作DF⊥BE于F,
∵A、B、C、D四点共圆,
∴∠FAD=∠BCD,
∵外角平分线AD交⊙O于D,
∴∠FAD=∠DAC,
又∵∠DBC=∠DAC,
∴∠BCD=∠CBD,
∴①DB=DC,故此选项正确;
∵AD外角平分线,DF⊥BE,DM⊥AC于M,
∴DF=DM,
在△BFD≌△CMD中,
$\left\{\begin{array}{l}{∠FBD=∠ACD}\\{∠DFB=∠DMC}\\{DF=DM}\end{array}\right.$,
∴Rt△BFD≌Rt△CMD,
∴BF=CM,
又∵AF=AM,
∴②AC-AB=CM+AM-AB=CM+AM-CM+AF=CM+AM-CM+AM=2AM,故此选项正确;
∴③AC+AB=AM+MC+BF-FA=AM+MC+MC-AM=2CM,故此选项正确;
S△ABD和S△ABC的大小无法判断,④错误,
故答案为:①②③.
点评 本题考查了圆周角、三角形的外角的性质及全等三角形的判定与性质;作出辅助线,利用三角形全等是正确解答本题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①②③ | B. | ①③ | C. | ②③ | D. | ② |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com