A. | 4 | B. | 5 | C. | 2$\sqrt{3}$ | D. | 2$\sqrt{5}$ |
分析 找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,求出即可.
解答 解:连接DE交AC于P,连接DB,
由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,
∴PE+PB=PE+PD=DE,
即DE就是PE+PB的最小值.
∵∠BAD=60°,AD=AB=4,
∴△ABD是等边三角形,
∵AE=BE,
∴DE⊥AB(等腰三角形三线合一的性质).
在Rt△ADE中,DE=$\sqrt{A{D}^{2}-A{E}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$.
即PB+PE的最小值为2$\sqrt{3}$.
故选C.
点评 本题主要考查轴对称-最短路线问题,菱形的性质,勾股定理等知识点,确定P点的位置是解答本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com